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1 Preliminaries

The empty set is denoted 𝟘, the point set, 𝟙 = {0}, and 𝟚 = {0, 1}. Given a ‘universe’ set 𝑋, the power

set of 𝑋 (the set of all its subsets) is denoted 2𝑋, and the set complement (in 𝑋) of a subset 𝑆 ⊆ 𝑋 is

denoted 𝑆 = 𝑋 ∖ 𝑆. The identity function in 𝑋 is I = I𝑋∶ 𝑋 → 𝑋.

The natural numbers are denotedℕ and include 0 (zero), and, for every natural number 𝑛 ∈ ℕ,

the set of the first 𝑛 natural numbers is denoted ⟦𝑛⟧ ≔ {𝑛′ ∈ ℕ | 𝑛′ < 𝑛} = {0,… , 𝑛 − 1}. The integers

are denoted ℤ, the rational numbers,ℚ, and the real numbers,ℝ. The positive, strictly positive, negative

and strictly negative integers are denoted ℤ≥0, ℤ>0, ℤ≤0 and ℤ<0, respectively. Analogous notation is

used for other number sets. We denote the infimum of a set 𝑆 by inf 𝑆 and its supremum by sup 𝑆.
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We denote a topological space by 𝑿 = (𝑋,𝒯), being 𝑋 the set of points of the space and 𝒯 its

topology1. We denote the topological interior of a set 𝑆 ⊆ 𝑋 by 𝑆⚬ and its topological closure by 𝑆⦁.

1.1 Manifolds, vector fields and flows

We will restrict our analysis to finite dimensional manifolds. We denote a 𝑑-dimensional𝒞𝑚-smooth

manifold by𝑴 = (𝑀,𝒜), being 𝑀 the set of points of the manifold and 𝒜 its 𝑑-dimensional 𝒞𝑚-

smooth atlas. The boundary of 𝑴 is a (𝑑 − 1)-dimensional𝒞𝑚-smooth submanifold of 𝑴 denoted

∂𝑴.

The tangent space of 𝑴 at a point 𝑝 ∈ 𝑀 is a 𝑑-dimensional vector space denoted T𝑀|𝑝, and

the tangent bundle of 𝑴 is a 2𝑑-dimensional 𝒞𝑚-smooth vector bundle over𝑴 denoted T𝑴. We

denote the differential of a differentiable transformation 𝑓∶ 𝑀 → 𝑀′ at a point 𝑝 ∈ 𝑀 by D𝑓|𝑝∶

T𝑀|𝑝 → T𝑀′|𝑓(𝑝); the derivative of a differentiable trajectory 𝛾∶ 𝐼 → 𝑀 at a time 𝑡0 ∈ 𝐼 by

̇𝛾(𝑡0) = ∂̇𝛾(𝑡0) =
d

d𝑡
𝛾(𝑡)|𝑡=𝑡0,

and the exterior derivative of a 𝑘-form field 𝜔 by d𝜔.

Given a𝒞𝑚-smooth vector field 𝑣∶ 𝑀 → T𝑀, its flow at a point 𝑝 ∈ 𝑀 and time 𝑡 ∈ ℝ is denoted

Φ𝑡𝑣(𝑝) and its time derivative, Φ̇𝑡𝑣(𝑝) ≔
d

d𝑠
Φ𝑠𝑣(𝑝)|𝑠=𝑡. When the vector field is complete and its flow

is global, we have a function

Φ𝑣∶ ℝ ×𝑀⟶𝑀

(𝑡, 𝑝)⟼ Φ𝑡𝑣(𝑝)

and, for every 𝑡 ∈ ℝ, a𝒞𝑚+1-diffeomorphism

Φ𝑡𝑣∶ 𝑀⟶𝑀

𝑝⟼Φ𝑡𝑣(𝑝).

This notation suggestes many properties the flow Φ𝑡𝑣 shares with the exponential function. By the

definition of the flow, we have that
Φ0𝑣 = I,

Φ̇𝑡𝑣 = 𝑣 ∘ Φ𝑡𝑣.

Besides that, by the scalling lemma, the flow of the vector field 𝑣 at time 𝑡 equals the flow of the vector

field 𝑡𝑣 at time 1:

Φ𝑡𝑣 = Φ1(𝑡𝑣),

and, by the translation lemma, the flow of 𝑣 at time 𝑡 + 𝑡′ is the composition of the flow of 𝑣 at times 𝑡

and 𝑡′:

Φ(𝑡+𝑡′)𝑣 = Φ𝑡𝑣 ∘ Φ𝑡′𝑣.

Also, if 𝒞𝑚-smooth vector fields 𝑣 and 𝑣′ commute ([𝑣, 𝑣′] = 0), then

Φ𝑡(𝑣+𝑣′) = Φ𝑡𝑣 ∘ Φ𝑡𝑣′,

but it is important to notice, though, that this last formula is not always true for vector fields that do

not commute.

1. We generally use boldface to indicate the space/categorial object 𝑿, including its structure (its topology 𝒯, distance | ⋅ , ⋅ |,
binary operation +, …), while the normal weight font denotes the underlying set 𝑋.
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The (Lie) flow derivative of a𝒞𝑚+1-smooth scalar field 𝑓∶ 𝑀 → ℝ by the flow of a𝒞𝑚+1-smooth

vector field 𝑣∶ 𝑀 → T𝑀 at a point 𝑝 ∈ 𝑀 is

∂𝑣𝑓(𝑝) ≔ lim
𝑡→0

𝑓(Φ𝑡𝑣(𝑝)) − 𝑓(𝑝)

𝑡
.

The derivative of 𝑓 by the flow of 𝑣 is a𝒞𝑚-smooth scalar field ∂𝑣𝑓∶ 𝑀 → ℝ, which can be further

differentiated along the flow of a vector field. If we differentiate 𝑓 by the same vector field 𝑣 a number

𝑛 ∈ ℕ of times, we denote it by ∂𝑛𝑣𝑓 (taking ∂0𝑣 = I, the identity). The flow derivative can be related to

the exterior as follows.

∂𝑣𝑓(𝑝) = lim
𝑡→0

𝑓(Φ𝑡𝑣(𝑝)) − 𝑓(𝑝)

𝑡

= lim
𝑡→0

𝑓(Φ𝑡𝑣(𝑝)) − 𝑓(Φ0𝑣(𝑝))

𝑡

=
d

d𝑡
𝑓 ∘ Φ𝑡𝑣(𝑝)|𝑡=0

= D𝑓|Φ𝑡𝑣(𝑝)(Φ̇
𝑡𝑣(𝑝))|𝑡=0

= D𝑓|𝑝(𝑣(𝑝))

= d𝑓|𝑝(𝑣(𝑝)).

When the manifold𝑴 is given a (Riemannian) metric field ⟨ ⋅ , ⋅ ⟩, the gradient ∇ of a scalar field

𝑓 is defined by duality with the exterior derivative d as ⟨∇𝑓(𝑝)|
𝑝
≔ d𝑓|𝑝, which means that, for every

tangent vector 𝑣 ∈ T𝑀|𝑝,

d𝑓|𝑝(𝑣) = ⟨∇𝑓(𝑝), 𝑣⟩𝑝.

In this case, the flow derivative ∂𝑣𝑓(𝑝) can be expressed using the gradient of the scalar field 𝑓 as

∂𝑣𝑓(𝑝) = ⟨∇𝑓(𝑝), 𝑣(𝑝)⟩𝑝.

2 Piecewise smooth vector fields

Definition 2.1. Let 𝑴 be a 𝑑-dimensional 𝒞𝑚+1-manifold. A switching submanifold of 𝑴 is an

embedded 1-codimensional𝒞𝑚+1-submanifold 𝛴 of 𝑴 for which there exists an open neighborhood

𝑈𝛴 ⊆ 𝑀 of 𝛴 in𝑀 and a 𝒞𝑚+1-smooth function ℎ∶ 𝑈𝛴 → ℝ such that 0 is a regular value of ℎ and

ℎ−1(0) = 𝛴.

1. The upper neighborhood (or upper side) of 𝛴 is 𝛴+ ≔ ℎ−1(ℝ>0)

2. The lower neighborhood (or lower side) of 𝛴 is 𝛴− ≔ ℎ−1𝑖 (ℝ<0).

The regular region of 𝑀 relative to 𝛴 is the open𝒞𝑚+1-submanifold𝑀 ∖𝛴. A switching point is a point

in 𝑝 ∈ 𝛴 and a regular point is a point in𝑀 ∖ 𝛴.

Question 2.1. Can an embedded 1-codimensional connected submanifold of 𝑴 always be given

as the preimage of a regular value of a 𝒞𝑚+1-smooth function? Is this condition necessary in the

definition of a switching manifold?

This means that a piecewise smooth vector field 𝑣∶ 𝑀 → T𝑀 is a𝒞𝑚+1-smooth vector field on

the regular region𝑀 ∖ 𝛴, and may have discontinuities only on the switching manifold 𝛴. We will

never take into consideration the value of 𝑣 on 𝛴, but rather define a diferent vector field on part of it,

called the sliding vector field, and ignore its definition on the rest of it.
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2.1 Regions of the switching manifold

The (Lie) flow derivative of a function ℎ∶ 𝑀 → ℝ by the flow of a vector field 𝑣∶ 𝑀 → T𝑀 at a point

𝑝 ∈ 𝑀 is

∂𝑣ℎ(𝑝) ≔ lim
𝑡→0

ℎ(Φ𝑡𝑣(𝑝)) − ℎ(𝑝)

𝑡
.

The flow derivative of ℎ by the flow of 𝑣 is another function ∂𝑣ℎ∶ 𝑀 → ℝ, which can be further

differentiated along the flow of a vector field. If we differentiate by the same vector field 𝑣 a number

𝑛 of times, we denote ∂𝑛𝑣ℎ.

When the manifold𝑴 is given a (Riemannian) metric field ⟨ ⋅ , ⋅ ⟩, the flow derivative ∂𝑣ℎ(𝑝) can

be expressed using the gradient of the function ℎ as

∂𝑣ℎ(𝑝) = ⟨∇ℎ(𝑝), 𝑣(𝑝)⟩𝑝.

2.1.1 Order of contact with the switching manifold

We wish to classify the points of the switching manifold 𝛴 acording to how the trajectories of the

flows of the fields upper and lower vector fields 𝑣+ and 𝑣− intersect 𝛴. To this end, let 𝑝 ∈ 𝑈𝛴 be a

point in the neighborhood of 𝛴 and consider the the real function

ℎ+(𝑡) ≔ ℎ(Φ𝑡𝑣+(𝑝)),

which is defined for 𝑡 in an 𝜀-neighborhood ]−𝜀, 𝜀[ of 0.

This function gives the ‘height’ of the trajectory of 𝑝 by the flow of 𝑣+ from the switching manifold

𝛴, in which the height is interpreted according to the function ℎ. Its derivative gives us information of

how this trajectory intersects 𝛴 at the point 𝑝. It can be expressed relatively to the derivative of ℎ by

the flow of 𝑣+ as follows.

The derivative of ℎ+ is

̇ℎ+(𝑡) = Dℎ|Φ𝑡𝑣+(𝑝) (
d

d𝑡
Φ𝑡𝑣+(𝑝)) = ∂𝑣+ℎ(Φ

𝑡𝑣+(𝑝)),

so its derivative at 𝑡 = 0 is ̇ℎ+(0) = ∂𝑣+ℎ(𝑝). By induction we obtain that its 𝑛-th derivative at 𝑡 = 0 is

(
d

d𝑡
)
𝑛

ℎ+(0) = ∂𝑛𝑣+ℎ(𝑝).

The same can be done for the lower vector field 𝑣− using the function

ℎ−(𝑡) ≔ ℎ(Φ𝑡𝑣−(𝑝)).

We are ready to define the order of contact of the point 𝑝.

Definition 2.2. Let𝑴 be a𝒞𝑚+1-manifold, 𝛴 a switching submanifold of 𝑴, 𝑣 a 𝛴-piecewise𝒞𝑚+1-

smooth vector field on𝑴 and 𝑝 ∈ 𝑈𝛴 a point in the neighborhood of 𝛴. The order of upper 𝛴-contact

(or upper multiplicity) of 𝑝 is

𝑐+ ≔ inf {𝑐 ∈ ℕ | ∂𝑐𝑣+ℎ(𝑝) ≠ 0}

and the order of lower 𝛴-contact (or lower multiplicity) of 𝑝 is

𝑐− ≔ inf {𝑐 ∈ ℕ | ∂𝑐𝑣−ℎ(𝑝) ≠ 0}.
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Since ∂0𝑣+ℎ(𝑝) = ∂0𝑣−ℎ(𝑝) = ℎ(𝑝), points which are in the regular region𝑀 ∖ 𝛴 (more specifically

in 𝛴+ ∪ 𝛴−, the upper and lower regions of 𝛴) are the points that have both orders of contact equal

to 0, and points which belong to 𝛴 have both orders of contact greater than 0. A singularity 𝑝 of the

upper vector field 𝑣+ satisfies 𝑣+(𝑝) = 0, so its flow trajectory is stationary. This implies that, for every

𝑚 ∈ ℕ>0, ∂
𝑚
𝑣𝑖
ℎ(𝑝) = 0. If 𝑝 ∈ 𝛴, this means that its order of upper contact is∞. The same goes for

the lower vector field 𝑣−.

Question 2.2. Is it possible to have a point 𝑝 ∈ 𝛴 that has order of upper/lower contact equal to∞

but is not a singularity of the upper/lower vector field?

On the next subsections, we classify the points with finite positive order of contact according to

their contact with the switching manifold from each of the positive and negative sides.

2.1.2 Crossing region

Definition 2.3 (Crossing region). Let𝑴 be a𝒞𝑚+1-manifold, 𝛴 a switching submanifold of 𝑴 and 𝑣

a 𝛴-piecewise𝒞𝑚+1-smooth vector field on𝑴. The crossing region of 𝛴 is the set

𝛴c ≔ {𝑝 ∈ 𝛴 | ∂𝑣+ℎ(𝑝)∂𝑣−ℎ(𝑝) > 0}.

A crossing point is a point 𝑝 ∈ 𝛴c. The crossing region 𝛴c can be divided into two regions.

1. The upward crossing region of 𝛴 is the set

𝛴+c ≔ {𝑝 ∈ 𝛴c | ∂𝑣+ℎ(𝑝) > 0} = {𝑝 ∈ 𝛴c | ∂𝑣−ℎ(𝑝) > 0}.

An upward crossing point is a point 𝑝 ∈ 𝛴+c.

2. The downward crossing region of 𝛴 is the set

𝛴−c ≔ {𝑝 ∈ 𝛴c | ∂𝑣−ℎ(𝑝) < 0} = {𝑝 ∈ 𝛴c | ∂𝑣+ℎ(𝑝) < 0}.

A downward crossing point is a point 𝑝 ∈ 𝛴−c.

𝛴+c

𝑣+
𝑣−

𝑝

(1) An upward crossing point 𝑝 ∈ 𝛴+c.

𝛴−c

𝑣+𝑣−

𝑝

(2) A downward crossing point 𝑝 ∈ 𝛴−c.

Figure 1. The crossing region 𝛴c.

2.1.3 Sliding region

Definition 2.4 (Sliding region). Let𝑴 be a𝒞𝑚+1-manifold, 𝛴 a switching submanifold of 𝑴 and 𝑣 a

𝛴-piecewise𝒞𝑚+1-smooth vector field on𝑴. The sliding region of 𝛴 is the set

𝛴s ≔ {𝑝 ∈ 𝛴 | ∂𝑣+ℎ(𝑝)∂𝑣−ℎ(𝑝) < 0}.

A sliding point is a point 𝑝 ∈ 𝛴s. The sliding region 𝛴s can be divided into two regions.
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1. The unstable sliding region (or escaping region) of 𝛴 is the set

𝛴us ≔ {𝑝 ∈ 𝛴s | ∂𝑣+ℎ(𝑝) > 0} = {𝑝 ∈ 𝛴s | ∂𝑣−ℎ(𝑝) < 0}.

An unstable sliding point (or escaping point) is a point in 𝑝 ∈ 𝛴us.

2. The stable sliding region (or accessing region) of 𝛴 is the set

𝛴ss ≔ {𝑝 ∈ 𝛴s | ∂𝑣−ℎ(𝑝) > 0} = {𝑝 ∈ 𝛴s | ∂𝑣+ℎ(𝑝) < 0}.

A stable sliding point (or accessing point) is a point in 𝑝 ∈ 𝛴ss.

𝛴us

𝑣+

𝑣−

𝑝

(1) An unstable sliding point 𝑝 ∈ 𝛴us.

𝛴ss

𝑣+

𝑣−

𝑝

(2) A stable sliding point 𝑝 ∈ 𝛴ss.

Figure 2. The sliding region 𝛴s.

2.1.4 Tangency region

Definition 2.5 (Tangency region). Let𝑴 be a𝒞𝑚+1-manifold, 𝛴 a switching submanifold of 𝑴 and

𝑣 a 𝛴-piecewise𝒞𝑚+1-smooth vector field on𝑴. The tangency region of 𝛴 is the set

𝛴t ≔ {𝑝 ∈ 𝛴 | ∂𝑣+ℎ(𝑝)∂𝑣−ℎ(𝑝) = 0}.

A tangency point is a point 𝑝 ∈ 𝛴t. The tangency region 𝛴t can be divided into two regions.

1. The simple tangency region of 𝛴 is the set

𝛴st ≔ {𝑝 ∈ 𝛴t | ∂𝑣+ℎ(𝑝) ≠ 0} ∪ {𝑝 ∈ 𝛴t | ∂𝑣−ℎ(𝑝) ≠ 0}.

A simple tangency point is a point 𝑝 ∈ 𝛴st.

2. The double tangency region of 𝛴t is the set

𝛴dt ≔ {𝑝 ∈ 𝛴t | ∂𝑣+ℎ(𝑝) = 0 = ∂𝑣−ℎ(𝑝)}.

A double tangency point is a point 𝑝 ∈ 𝛴dt.

Folds and cusps, visible and invisible We now classificate tangency points according to whether

they can be reached with the flow of the vector field on the regular region.

Definition 2.6 (Visible and invisible tangencies). Let𝑴 be a𝒞𝑚+1-manifold, 𝛴 a switching subman-

ifold of 𝑴 and 𝑣 a 𝛴-piecewise𝒞𝑚+1-smooth vector field on𝑴.

1. An (upper/lower) visible tangency point is a tangency point 𝑝 ∈ 𝛴t for which there exists

𝜀 ∈ ℝ>0 such that at least one of the following holds:
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1.1. (Accessible) For every 𝑡 ∈ ]−𝜀, 0[, Φ𝑡𝑣±(𝑝) ∈ 𝛴±.

1.2. (Escapable) For every 𝑡 ∈ ]0, 𝜀[, Φ𝑡𝑣±(𝑝) ∈ 𝛴±.

A visible tangency point is tangency point that is upper visible or lower visible.

2. An (upper/lower) invisible tangency point is a tangency point 𝑝 ∈ 𝛴t for which there exists

𝜀 ∈ ℝ>0 such that, for every 𝑡 ∈ ]−𝜀, 𝜀[ ∖ {0}, Φ𝑡𝑣±(𝑝) ∈ 𝛴∓. An invisible tangency point is a

tangency point that is both upper invisible and lower invisible.

Definition 2.7 (Fold and cusp tangencies). Let𝑴 be a𝒞𝑚+1-manifold, 𝛴 a switching submanifold

of 𝑴 and 𝑣 a 𝛴-piecewise𝒞𝑚+1-smooth vector field on𝑴.

1. An (upper/lower) fold tangency point is a tangency point 𝑝 ∈ 𝛴t whose order of (upper/lower)

contact 𝑐± with 𝛴 is even.

2. An (upper/lower) cusp tangency point is a tangency point 𝑝 ∈ 𝛴t whose order of (upper/lower)

contact 𝑐± with 𝛴 is odd.

The function ∂𝑣±ℎ has the same sign at each side of a cusp tangency point, and has opposite

signs at each side of a fold tangency point. A simple analysis of the concavity of the functions

ℎ±(𝑡) = ℎ(Φ𝑡𝑣±(𝑝)) at 0 shows the following properties of folds and cusps.

Proposition 2.1. Let𝑴 be a 𝒞𝑚+1-manifold, 𝛴 a switching submanifold of 𝑴 and 𝑣 a 𝛴-piecewise

𝒞𝑚+1-smooth vector field on𝑴.

1. An (upper/lower) fold tangency point 𝑝 ∈ 𝛴t with order of upper contact 𝑐± is (upper/lower)

visible (both accessible and escapable) if ±∂
𝑐±
𝑣±ℎ(𝑝) > 0, and upper invisible if ±∂

𝑐±
𝑣±ℎ(𝑝) < 0.

2. An (upper/lower) cusp tangency point is (upper/lower) visible. It is accessible if ±∂𝑣±ℎ(𝑝) < 0,

and escapable if ±∂𝑣±ℎ(𝑝) > 0.

Visible Invisible

Accessible Escapable

Fold ±∂
𝑐±
𝑣±ℎ(𝑝) > 0 ±∂

𝑐±
𝑣±ℎ(𝑝) < 0

Cusp ±∂
𝑐±
𝑣±ℎ(𝑝) < 0 ±∂

𝑐±
𝑣±ℎ(𝑝) > 0 —

Table 1. Visibility of fold and cusp tangency points given by proposition 2.1. The sign

± indicates the side of 𝛴 relative to which the tangency point 𝑝 is a visible/invisible

fold/cusp.

Definition 2.8 (Accessible and escapable points). Let𝑴 be a𝒞𝑚+1-manifold, 𝛴 a switching subman-

ifold of 𝑴 and 𝑣 a 𝛴-piecewise𝒞𝑚+1-smooth vector field on𝑴.

1. An upper (resp. lower/centrally) accessible switching point is a switching point 𝑝 ∈ 𝛴 for which

there exists 𝜀 ∈ ℝ>0 such that, for every 𝑡 ∈ ]−𝜀, 0[, Φ𝑡𝑣+(𝑝) ∈ 𝛴+ (resp. Φ𝑡𝑣−(𝑝) ∈ 𝛴− /

Φ𝑡𝑣0(𝑝) ∈ 𝛴). An inaccessible switching point is a switching point that is not accessible;

2. An upper (resp. lower/centrally) escapable switching point is a switching point 𝑝 ∈ 𝛴 for

which there exists 𝜀 ∈ ℝ>0 such that, for every 𝑡 ∈ ]0, 𝜀[, Φ𝑡𝑣+(𝑝) ∈ 𝛴+ (resp. Φ𝑡𝑣−(𝑝) ∈ 𝛴− /

Φ𝑡𝑣0(𝑝) ∈ 𝛴). An inescapable switching point is a switching point that is not escapable.

Transversality of double tangencies In the following definition, ∢(𝑣+(𝑝), 𝑣−(𝑝)) is the angle

between the vectors 𝑣+(𝑝) and 𝑣−(𝑝).
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Simple fold Accessible Escapable

Visible
𝛴+c𝛴ss 𝛴−c 𝛴us

Invisible
𝛴+c 𝛴ss 𝛴−c𝛴us

Table 2. Simple fold tangency points.

Definition 2.9. Let𝑴 be a 𝒞𝑚+1-manifold, 𝛴 a switching submanifold of 𝑴 and 𝑣 a 𝛴-piecewise

𝒞𝑚+1-smooth vector field on𝑴. A double tangency point 𝑝 ∈ 𝛴dt is

1. cooriented if ∢(𝑣+(𝑝), 𝑣−(𝑝)) = 0.

2. transverse if 0 < ∢(𝑣+(𝑝), 𝑣−(𝑝)) < 𝜋.

3. contraoriented if ∢(𝑣+(𝑝), 𝑣−(𝑝)) = 𝜋.

Notice that transverse double tangencies 𝑝 ∈ 𝛴dt can only occur when dim(𝑀) ≥ 3 because

otherwise dim(𝛴) ≤ 1, so the vector fields 𝑣+(𝑝) and 𝑣−(𝑝) have to be parallel.

2.1.5 Topological properties of the regions of the switching manifold

Proposition 2.2. Let𝑴 be a 𝒞𝑚+1-manifold, 𝛴 a switching submanifold of 𝑴 and 𝑣 a 𝛴-piecewise

𝒞𝑚+1-smooth vector field on𝑴.

1. the upper and lower crossing regions 𝛴+c and 𝛴−c and the stable and unstable sliding regions 𝛴ss

and 𝛴us are relatively open in 𝛴;

2. the tangency region 𝛴t is relatively closed in 𝛴 and is the boundary ∂(𝛴c ∪ 𝛴s) of the crossing and

sliding regions in 𝛴;

3. the simple tangency region 𝛴st is relatively open in 𝛴t;

4. the double tangency region 𝛴dt is relatively closed in 𝛴t and is the boundary ∂𝛴st of the single

tangency region in 𝛴t.

2.2 Structural stability

2.3 Sliding vector field

We are now going to define a vector field on the sliding manifold 𝛴s, called the sliding vector field 𝑣0.

Filippov’s convention stablishes that this vector field, at a tangency point 𝑝 ∈ 𝛴s, must be the convex

combination of the vectors 𝑣+(𝑝) and 𝑣−(𝑝) which is tangent to to 𝛴s. Notice that, since 𝑝 ∈ 𝛴s, then

∂𝑣+ℎ(𝑝)∂𝑣−ℎ(𝑝) ≤ 0, so ∂𝑣+ℎ(𝑝) and ∂𝑣−ℎ(𝑝) have oppostive signs, which means that 𝑣+(𝑝) and 𝑣−(𝑝)
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Double fold Cooriented Transverse Contraoriented

Visible
𝛴ss 𝛴us

𝛴−c 𝛴+c
𝛴us

𝛴ss

𝛴−c 𝛴+c

Visible-invisible
𝛴−c 𝛴+c 𝛴+c

𝛴us𝛴ss

𝛴−c

𝛴ss 𝛴us

Invisible
𝛴us 𝛴ss

𝛴+c 𝛴−c
𝛴ss

𝛴us

𝛴+c 𝛴−c

Table 3. Transversality of double fold tangency points.

point to opposite sides of 𝛴s, hence there is always a convex combination of them that is tangent to

𝛴s. Let us calculate explicitly the value of the sliding vector field 𝑣0 relative to the upper and lower

vector fields 𝑣+ and 𝑣−.

Proposition 2.3. Let𝑴 be a𝒞𝑚+1-manifold, 𝛴 a switching submanifold of 𝑴, 𝑣 a 𝛴-piecewise𝒞𝑚+1-

smooth vector field on𝑴 and 𝑝 ∈ 𝛴s a sliding point. The convex combination of the vectors 𝑣+(𝑝) and

𝑣−(𝑝) that is tangent to 𝛴 at 𝑝 is

𝑣0(𝑝) ≔
−∂𝑣−ℎ(𝑝)

∂𝑣+ℎ(𝑝) − ∂𝑣−ℎ(𝑝)
𝑣+(𝑝) +

∂𝑣+ℎ(𝑝)

∂𝑣+ℎ(𝑝) − ∂𝑣−ℎ(𝑝)
𝑣−(𝑝).

Proof. A convex combination of 𝑣+(𝑝) and 𝑣−(𝑝) is given, for some 𝑠 ∈ [0, 1], by

𝑐𝑠(𝑝) ≔ (1 − 𝑠)𝑣+(𝑝) + 𝑠𝑣−(𝑝).

If this convex combination is tangent to 𝛴, it must satisfy 0 = ⟨∇ℎ(𝑝), 𝑐𝑠(𝑝)⟩ = ∂𝑐𝑠(𝑝)ℎ(𝑝), so by the

ℝ-linearity of the flow derivative ∂ in the vector field argument,

0 = ∂𝑐𝑠(𝑝)ℎ(𝑝) = (1 − 𝑠)∂𝑣+ℎ(𝑝) + 𝑠∂𝑣−ℎ(𝑝) = ∂𝑣+ℎ(𝑝) + 𝑠(∂𝑣−ℎ(𝑝) − ∂𝑣+ℎ(𝑝)).

Since 𝑝 ∈ 𝛴s, then ∂𝑣+ℎ(𝑝)∂𝑣−ℎ(𝑝) < 0, hence ∂𝑣+ℎ(𝑝) − ∂𝑣−ℎ(𝑝) ≠ 0, so it follows that

𝑠 =
∂𝑣+ℎ(𝑝)

∂𝑣+ℎ(𝑝) − ∂𝑣−ℎ(𝑝)
.
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If ∂𝑣+ℎ(𝑝) > 0, then ∂𝑣−ℎ(𝑝) < 0, so ∂𝑣+ℎ(𝑝) − ∂𝑣−ℎ(𝑝) > 0 and ∂𝑣+ℎ(𝑝) < ∂𝑣+ℎ(𝑝) − ∂𝑣−ℎ(𝑝).

From this we obtain

0 <
∂𝑣+ℎ(𝑝)

∂𝑣+ℎ(𝑝) − ∂𝑣−ℎ(𝑝)
< 1.

If ∂𝑣+ℎ(𝑝) < 0, then ∂𝑣−ℎ(𝑝) > 0, so ∂𝑣+ℎ(𝑝) − ∂𝑣−ℎ(𝑝) < 0 and ∂𝑣+ℎ(𝑝) > ∂𝑣+ℎ(𝑝) − ∂𝑣−ℎ(𝑝).

From this we obtain

0 <
∂𝑣+ℎ(𝑝)

∂𝑣+ℎ(𝑝) − ∂𝑣−ℎ(𝑝)
< 1.

In both cases, 0 < 𝑠 < 1. For 𝑝 ∈ 𝛴st, either ∂𝑣+ℎ(𝑝) = 0 or ∂𝑣−ℎ(𝑝) = 0, but not both, so

∂𝑣+ℎ(𝑝) − ∂𝑣−ℎ(𝑝) ≠ 0 and we obtain 𝑠 = 0 or 𝑠 = 1, respectively. We conclude that

𝑐𝑠(𝑝) = (1 − 𝑠)𝑣+(𝑝) + 𝑠𝑣−(𝑝) =
−∂𝑣−ℎ(𝑝)

∂𝑣+ℎ(𝑝) − ∂𝑣−ℎ(𝑝)
𝑣+(𝑝) +

∂𝑣+ℎ(𝑝)

∂𝑣+ℎ(𝑝) − ∂𝑣−ℎ(𝑝)
𝑣−(𝑝). ◼

Notice that, for a sliding point 𝑝 ∈ 𝛴s, it holds that ∂𝑣+ℎ(𝑝)∂𝑣−ℎ(𝑝) < 0, so ∂𝑣+ℎ(𝑝) and ∂𝑣−ℎ(𝑝)

have different signs and therefore ∂𝑣+ℎ(𝑝) − ∂𝑣−ℎ(𝑝) ≠ 0. For simple tangency points, it holds that

either ∂𝑣+ℎ(𝑝) ≠ 0 and ∂𝑣−ℎ(𝑝) = 0, or ∂𝑣+ℎ(𝑝) = 0 and ∂𝑣−ℎ(𝑝) ≠ 0, therefore we also obtain

∂𝑣+ℎ(𝑝) − ∂𝑣−ℎ(𝑝) ≠ 0.

Definition 2.10. Let𝑴 be a𝒞𝑚+1-manifold, 𝛴 a switching submanifold of 𝑴 and 𝑣 a 𝛴-piecewise

𝒞𝑚+1-smooth vector field on𝑴. The sliding vector field on 𝛴s ∪ 𝛴st is the vector field 𝑣0∶ 𝛴
s ∪ 𝛴st →

T(𝛴s ∪ 𝛴st) defined for each 𝑝 ∈ 𝛴s ∪ 𝛴st by

𝑣0(𝑝) ≔
−∂𝑣−ℎ(𝑝)

∂𝑣+ℎ(𝑝) − ∂𝑣−ℎ(𝑝)
𝑣+(𝑝) +

∂𝑣+ℎ(𝑝)

∂𝑣+ℎ(𝑝) − ∂𝑣−ℎ(𝑝)
𝑣−(𝑝).

Question 2.3. What happens to the sliding vector field 𝑣0 near a singularity of the upper or lower

vector fields that lies on 𝛴t?

Proposition 2.4. Let𝑴 be a 𝒞𝑚+1-manifold, 𝛴 a switching submanifold of 𝑴 and 𝑣 a 𝛴-piecewise

𝒞𝑚+1-smooth vector field on𝑴. The sliding vector field 𝑣0∶ 𝛴
s → T𝛴s is𝒞𝑚-smooth.

Proof. This is a direct consequence of the definition of 𝑣0 since ∂𝑣+ℎ and ∂𝑣−ℎ are𝒞𝑚-smooth scalar

fields. ◼

Definition 2.11. Let𝑴 be a𝒞𝑚+1-manifold, 𝛴 a switching submanifold of 𝑴 and 𝑣 a 𝛴-piecewise

𝒞𝑚+1-smooth vector field on𝑴. A pseudo-equilibrium of 𝑣 is an equilibrium of the sliding vector

field 𝑣0: a point 𝑝 ∈ 𝛴s ∪ 𝛴st such that 𝑣0(𝑝) = 0.

2.4 Piecewise smooth orbits

Before we define piecewise smooth orbits that are integral solutions of a piecewise smooth vector

field, we just fix terminoly and notation for the concatenation of two trajectories. For that, we denote

the lower and upper extremes of an interval 𝐼 ⊆ ℝ by ∂−𝐼 ≔ min ∂𝐼 and ∂+𝐼 ≔ max ∂𝐼, respectively.

Definition 2.12. Let 𝐗 be a (Hausdorff) topological space, 𝑥 ∈ 𝑋 a point, 𝐼, 𝐼′ ⊆ ℝ intervals with

𝑡𝑥 ≔ ∂+𝐼 = ∂−𝐼
′, and 𝛾∶ 𝐼 → 𝑋 and 𝛾′∶ 𝑋 → continuous paths such that

𝑥 = lim
𝑡↗∂+𝐼

𝛾(𝑡) = lim
𝑡↘∂−𝐼′

𝛾′(𝑡).
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The concatenation of 𝛾 with 𝛾′ at 𝑝 is the trajectory

𝛾∪⋅ 𝛾
′∶ 𝐼 ∪ {𝑡𝑥} ∪ 𝐼

′ ⟶𝑋

𝑡⟼ 𝛾∪⋅ 𝛾
′(𝑡) ≔

⎧

⎨
⎩

𝛾(𝑡) 𝑡 ∈ 𝐼

𝑥 𝑡 = 𝑡𝑥

𝛾′(𝑡) 𝑡 ∈ 𝐼′.

Proposition 2.5. Let 𝐗 be a (Hausdorff) topological space, 𝑥 ∈ 𝑋 a point, 𝐼, 𝐼′ ⊆ ℝ intervals with

𝑡𝑥 ≔ ∂+𝐼 = ∂−𝐼
′, and 𝛾∶ 𝐼 → 𝑋 and 𝛾′∶ 𝑋 → continuous paths such that

𝑥 = lim
𝑡↗∂+𝐼

𝛾(𝑡) = lim
𝑡↘∂−𝐼′

𝛾′(𝑡).

The concatenation 𝛾∪⋅ 𝛾
′∶ 𝐼 ∪ {𝑡𝑥} ∪ 𝐼

′ → 𝑋 is a continuous path.

Definition 2.13. Let𝑴 be a𝒞𝑚+1-manifold, 𝛴 a switching submanifold of 𝑴 and 𝑣 a 𝛴-piecewise

𝒞𝑚+1-smooth vector field on𝑴. A piecewise smooth orbit of 𝑣 is a trajectory 𝛾∶ 𝐼 → 𝑀 that satisfies

the following local conditions: for every 𝑡0 ∈ 𝐼 and 𝑝 ≔ 𝛾(𝑡0), there exists 𝜀 ∈ ℝ>0 such that

1. (Regular orbit) If 𝑝 ∈ 𝑀 ∖ 𝛴, then, for every 𝑡 ∈ ]−𝜀, 𝜀[, 𝛾(𝑡0 + 𝑡) ∈ 𝑀 ∖ 𝛴 and

𝛾(𝑡0 + 𝑡) = Φ𝑡𝑣(𝑝).

That is, 𝛾 is locally the flow of 𝑣.

2. (Crossing orbit) If 𝑝 ∈ 𝛴c, then, for every 𝑡 ∈ ]−𝜀, 𝜀[ ∖ {0}, 𝛾(𝑡0 + 𝑡) ∈ 𝑀 ∖ 𝛴 and

𝛾(𝑡0 + 𝑡) = Φ𝑡𝑣(𝑝).

That is, 𝛾 is locally a concatenation at 𝑝 of the flow of 𝑣 on the upper and lower regions of 𝛴.

3. (Sliding orbit) If 𝑝 ∈ 𝛴s, then one of the following options hold:

3.1. (Regular sliding orbit) For every 𝑡 ∈ ]−𝜀, 𝜀[, 𝛾(𝑡0 + 𝑡) ∈ 𝛴s and

𝛾(𝑡0 + 𝑡) = Φ𝑡𝑣0(𝑝).

That is, 𝛾 is locally the flow of 𝑣0.

3.2. (Superior escaping sliding orbit) For every 𝑡 ∈ ]−𝜀, 0], 𝛾(𝑡0 + 𝑡) ∈ 𝛴us, for every

𝑡 ∈ ]0, 𝜀[, 𝛾(𝑡0 + 𝑡) ∈ 𝑀 ∖ 𝛴, and

𝛾(𝑡0 + 𝑡) = {
Φ𝑡𝑣0(𝑝), 𝑡 < 0

Φ𝑡𝑣+(𝑝) 𝑡 ≥ 0

That is, 𝛾 is locally a concatenation at 𝑝 of the flows of 𝑣0 and 𝑣+.

3.3. (Inferior escaping sliding orbit) For every 𝑡 ∈ ]−𝜀, 0], 𝛾(𝑡0+𝑡) ∈ 𝛴us, for every 𝑡 ∈ ]0, 𝜀[,

𝛾(𝑡0 + 𝑡) ∈ 𝑀 ∖ 𝛴, and

𝛾(𝑡0 + 𝑡) = {
Φ𝑡𝑣0(𝑝), 𝑡 < 0

Φ𝑡𝑣−(𝑝) 𝑡 ≥ 0

That is, 𝛾 is locally a concatenation at 𝑝 of the flows of 𝑣0 and 𝑣−.

3.4. (Superior accessing sliding orbit) For every 𝑡 ∈ ]−𝜀, 0[, 𝛾(𝑡0 + 𝑡) ∈ 𝑀 ∖ 𝛴, for every

𝑡 ∈ [0, 𝜀[, 𝛾(𝑡0 + 𝑡) ∈ 𝛴ss, and

𝛾(𝑡0 + 𝑡) = {
Φ𝑡𝑣+(𝑝), 𝑡 ≤ 0

Φ𝑡𝑣0(𝑝) 𝑡 > 0

That is, 𝛾 is locally a concatenation at 𝑝 of the flows of 𝑣+ and 𝑣0.
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3.5. (Inferior accesing sliding orbit) For every 𝑡 ∈ ]−𝜀, 0[, 𝛾(𝑡0 + 𝑡) ∈ 𝑀 ∖ 𝛴, for every

𝑡 ∈ [0, 𝜀[, 𝛾(𝑡0 + 𝑡) ∈ 𝛴ss, and

𝛾(𝑡0 + 𝑡) = {
Φ𝑡𝑣+(𝑝), 𝑡 ≤ 0

Φ𝑡𝑣0(𝑝) 𝑡 > 0

That is, 𝛾 is locally a concatenation at 𝑝 of the flows of 𝑣− and 𝑣0.

4. (Tangency point) If 𝑝 ∈ 𝛴t, the orbit is a concatenation at 𝑝 of an orbit of 𝑣+, 𝑣− or 𝑣0 — if 𝑝 is

upper, lower or centrally accessible, respectively — or of a sationary orbit — if 𝑝 is inaccessible

— with an orbit of 𝑣+, 𝑣− or 𝑣0 — if 𝑝 is upper, lower or centrally escapable, respectively — or

with a sationary orbit — if 𝑝 is inescapable.

A maximal piecewise smooth orbit of 𝑣 is a piecewise smooth orbit of 𝑣 that cannot be extended to

a strictly larger interval domain.

This means that a piecewise smooth orbit of 𝑣 is a continuous piecewise𝒞𝑚+1-smooth trajectory

on𝑀, with points of non-smoothness only on the switching manifold 𝛴.

Question 2.4. What are the types of tangency points and concatenations that can occur together?

Coding piecewise smooth orbits As a consequence of our definition of piecewise smooth orbits

for the piecewise smooth vector field 𝑣, we do not have uniqueness of solutions, neither for positive

nor for negative time. This is so because Filippov’s convention establishes that the piecewise vector

field 𝑣 should be understood as been set valued on the switching manifold 𝛴, and for some particular

points on 𝛴 we can define the sliding vector field.

Nontheless, we still have some regularity, some control over the behavior of orbits Besides the

points of concatenation of regular orbits, the orbit is uniquely defined by the flows of the upper vector

field 𝑣+, the lower vector field 𝑣− or the sliding vector 𝑣0. Definition 2.13 implies that for each

piecewise smooth orbit 𝛾 of 𝑣 defined on an interval 𝐼 ⊆ ℝ (we assume 0 ∈ 𝐼 for simplicity), there

exists a sequence (𝑞𝑖, 𝜎𝑖) of switching points 𝑞𝑖 ∈ 𝛴 and signs 𝜎𝑖 ∈ {1, −1} that indicates the points of

concatenation and sides of 𝛴 this concatenation occurs.

These points can be crossing, sliding, or tangency points. For our purposes, we ignore crossing

points, since the orbit does not loose uniqueness at them. Wewill focus on sliding points, and tangency

points on their closure. Especifically, we distinguish accessing points 𝛴ss and escaping points 𝛴us

because the orbit looses uniqueness at escaping points when going forward, and at accessing points

when going backward. Precisely, we state proposition 2.6, but first we define some terms that will

ease its formulation.

Definition 2.14. Let𝑴 be a𝒞𝑚+1-manifold, 𝛴 a switching submanifold of 𝑴 and 𝑣 a 𝛴-piecewise

𝒞𝑚+1-smooth vector field on 𝑴. Consider a piecewise smooth orbit 𝛾∶ 𝐼 → 𝑀 of 𝑣, 𝜏 ∈ 𝐼⚬, and

𝜎 ∈ {1, −1}. We say

1. 𝛾 accesses 𝛴ss from 𝛴𝜍 through the point 𝑎 ∈ (𝛴ss)⦁ at time 𝜏 when 𝛾(𝜏) = 𝑎 and there exists

𝜀 ∈ ℝ>0 such that, for every 𝑡 ∈ ]𝜏 − 𝜀, 𝜏[, 𝛾(𝑡) ∈ 𝛴𝜍;

2. 𝛾 escapes 𝛴us to 𝛴𝜍 through the point 𝑒 ∈ (𝛴us)⦁ at time 𝜏 when 𝛾(𝜏) = 𝑒 and there exists

𝜀 ∈ ℝ>0 such that, for every 𝑡 ∈ ]𝜏, 𝜏 + 𝜀[, 𝛾(𝑡) ∈ 𝛴𝜍.

Proposition 2.6. Let𝑴 be a 𝒞𝑚+1-manifold, 𝛴 a switching submanifold of 𝑴 and 𝑣 a 𝛴-piecewise

𝒞𝑚+1-smooth vector field on𝑴. For each piecewise smooth orbit 𝛾∶ 𝐼 → 𝑀 of 𝑣 (assume that 0 ∈ 𝐼 for

simplicity),
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1. there exist a discrete interval 𝐼𝑎 ⊆ ℤ, a sequence 𝑎∶ 𝐼𝑎 → (𝛴ss)⦁ of accessing sliding points (or

tangency points in their closure), a sequence 𝜎𝑎(⋅)∶ 𝐼𝑎 → {1,−1} of signs, and a strictly increasing

sequence 𝜏𝑎(⋅)∶ 𝐼𝑎 → 𝐼 of times which satisfy that

1.1. for each 𝑖 ∈ 𝐼𝑎, 𝛾 accesses 𝛴ss from 𝛴𝜍𝑎(𝑖) through the point 𝑎(𝑖) at time 𝜏𝑎(𝑖);

1.2. if 𝑖 − 1 ∈ 𝐼𝑎, the last time 𝛾 accessed 𝛴ss before 𝜏𝑎(𝑖) was at 𝜏𝑎(𝑖 − 1);

1.3. −1 ≤ 𝜏𝑎(0) < 0 and 𝐼𝑎 is maximal with these properties;

2. there exist a discrete interval 𝐼𝑒 ⊆ ℤ, a sequence 𝑒∶ 𝐼𝑒 → (𝛴us)⦁ of escaping sliding points (or

tangency points in their closure), a sequence 𝜎𝑒(⋅)∶ 𝐼𝑒 → {1,−1} of signs, and a strictly increasing

sequence 𝜏𝑒(⋅)∶ 𝐼𝑒 → 𝐼 of times which satisfy that

2.1. for each 𝑖 ∈ 𝐼𝑒, 𝛾 escapes 𝛴us to 𝛴𝜍𝑒(𝑖) through the point 𝑒(𝑖) at time 𝜏𝑒(𝑖);

2.2. if 𝑖 + 1 ∈ 𝐼𝑎, the first time 𝛾 escapes 𝛴us after 𝜏𝑎(𝑖) is at 𝜏𝑎(𝑖 + 1);

2.3. −1 < 𝜏𝑒(0) ≤ 0 and 𝐼𝑒 is maximal with these properties.

3 Topological dynamics of piecewise smooth vector fields

3.1 Topological transitivity

4 Orbit spaces

4.1 Orbit space and orbit space flow

Definition 4.1. Let𝑴 be a 𝒞𝑚+1-manifold, 𝛴 a switching submanifold of 𝑴 and 𝑣 a 𝛴-piecewise

𝒞𝑚+1-smooth vector field on𝑴. The orbit space of 𝑣 is the set of all maximal piecewise smooth orbits

of 𝑣:

𝑀̃ ≔ {𝛾∶ 𝐼𝛾 → 𝑀 | 𝛾 is a maximal piecewise smooth orbit of 𝑣}.

Notice that the orbit space 𝑀̃ does not depend only on the manifold𝑴, but also on the piecewise

smooth vector field 𝑣, so this is an abuse of notation. We do this because the notation for the sets𝑀

and 𝑀̃ resemble each other.

Definition 4.2. Let 𝑴 be a 𝒞𝑚+1-manifold, 𝛴 a switching submanifold of 𝑴 and 𝑣 a piecewise

smooth vector field on𝑴. The flow domain on 𝑀̃ is the set

𝐷Φ̃ ≔
⋃
𝛾∈𝑀̃

𝐼𝛾 × {𝛾} ⊆ ℝ × 𝑀̃.

The flow on 𝑀̃ induced by 𝑣 is the transformation

Φ̃∶ 𝐷Φ̃ ⟶𝑀̃

(𝑡, 𝛾)⟼ Φ̃𝑡(𝛾)∶ 𝐼𝛾 − 𝑡⟶𝑀

𝑡′ ⟼𝛾(𝑡 + 𝑡′).

When every maximal piecewise smooth orbit 𝛾 ∈ 𝑀̃ is defined on ℝ, this simplifies to the flow

Φ̃∶ ℝ × 𝑀̃⟶ 𝑀̃

(𝑡, 𝛾)⟼ Φ̃𝑡(𝛾)∶ ℝ ⟶𝑀

𝑡′ ⟼𝛾(𝑡 + 𝑡′).

We will show that this is a continuous flow after we introduce a topology on 𝑀̃.
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4.2 Metric space structure of the orbit space

We now take in the manifold𝑴 a compatible distance function | ⋅ , ⋅ | induced by a Riemannian metric

tensor ⟨ ⋅ , ⋅ ⟩. We will also assume that the the piecewise smooth vector field 𝑣 is bounded, that is, its

supremum norm is finite:

‖𝑣‖ ≔ sup
𝑝∈𝑀

|𝑣(𝑝)| < ∞.

This implies that the sliding vector field 𝑣0 is also bounded. We also assume ‖𝑣‖ > 0. We may

ocasionally assume that 𝑣 is Lipschitz continuous instead of bounded. This menas that its dilation is

finite:

⟪𝑣⟫ ≔ sup
𝑝≠𝑝′∈𝑀

|𝑣(𝑝′) − 𝑣(𝑝)|

|𝑝, 𝑝′|
< ∞.

Definition 4.3. Let𝑴 be a𝒞𝑚+1-manifold with Riemannian distance | ⋅ , ⋅ |, 𝛴 a switching subman-

ifold of 𝑴 and 𝑣 a bounded piecewise smooth vector field on 𝑴. The (supremum) distance on 𝑀̃

induced by | ⋅ , ⋅ | is the function

‖ ⋅ , ⋅ ‖∶ 𝑀̃ × 𝑀̃⟶ ℝ

(𝛾0, 𝛾1)⟼ ‖𝛾0, 𝛾1‖ ≔+
𝑖∈ℤ

2−|𝑖| sup
𝑖≤𝑡<𝑖+1

|𝛾0(𝑡), 𝛾1(𝑡)|.

4.3 Topological transitivity, above and below

4.4 Topological entropy
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