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1 Preliminaries

The empty set is denoted 0, the point set, 1 = {0}, and 2 = {0, 1}. Given a ‘universe’ set X, the power
set of X (the set of all its subsets) is denoted 2%, and the set complement (in X) of a subset S C X is

denoted S = X  S. The identity function in Xis I = Iy : X — X.
The natural numbers are denoted N and include 0 (zero), and, for every natural number n €

Na

the set of the first n natural numbers is denoted [1n] := {n’' € N|n’ < n} ={0,...,n — 1}. The integers
are denoted Z, the rational numbers, Q, and the real numbers, R. The positive, strictly positive, negative
and strictly negative integers are denoted Zs, Z ¢, Z<o and Z ., respectively. Analogous notation is

used for other number sets. We denote the infimum of a set S by inf S and its supremum by sup S.



We denote a topological space by X = (X, 7)), being X the set of points of the space and J its
topology*. We denote the fopological interior of a set S C X by S° and its topological closure by S°.

1.1 Manifolds, vector fields and flows

We will restrict our analysis to finite dimensional manifolds. We denote a d-dimensional 6™ -smooth
manifold by M = (M, A), being M the set of points of the manifold and A its d-dimensional €"-
smooth atlas. The boundary of M is a (d — 1)-dimensional €™-smooth submanifold of M denoted
oM.

The tangent space of M at a point p € M is a d-dimensional vector space denoted TM|,, and
the tangent bundle of M is a 2d-dimensional €™-smooth vector bundle over M denoted TM. We
denote the differential of a differentiable transformation f: M — M’ ata point p € M by Df|, :
TM|, — TM'|f(p); the derivative of a differentiable trajectory y : I — M ata time ¢, € I by

7o) = 8(to) = 1Dty

and the exterior derivative of a k-form field w by dw.
Given a €™-smooth vector field v: M — TM, its flow at a point p € M and time ¢ € R is denoted

®(p) and its time derivative, ®"(p) := %@S"(pﬂ s=¢- When the vector field is complete and its flow
is global, we have a function

®':RXM—M
(t, p) — ®"(p)

and, foreveryt € R, a @™+l diffeomorphism
PV M— M
p — @"(p).

This notation suggestes many properties the flow @ shares with the exponential function. By the

definition of the flow, we have that
o =1,

(i)tv =7vo q)t".

Besides that, by the scalling lemma, the flow of the vector field v at time ¢ equals the flow of the vector
field tv at time 1:
Pl = (I)l(tv)’

and, by the translation lemma, the flow of v at time ¢ + ¢’ is the composition of the flow of v at times ¢
and t":
q)(t+t')v =dlo q)t’v_

Also, if €™-smooth vector fields v and v’ commute ([v, V'] = 0), then
(-Dt(v+v') = o q)tv’

but it is important to notice, though, that this last formula is not always true for vector fields that do
not commute.

. We generally use boldface to indicate the space/categorial object X, including its structure (its topology T, distance |-, - |,
binary operation +, ...), while the normal weight font denotes the underlying set X.



The (Lie) flow derivative of a €*!-smooth scalar field f : M — R by the flow of a €™*+!-smooth
vector field v: M — TM at a point p € M is

_ i S@7(p) — f(p)
9,f(p) = lim —=———=——==.

The derivative of f by the flow of v is a ‘6"-smooth scalar field 3, f : M — R, which can be further
differentiated along the flow of a vector field. If we differentiate f by the same vector field v a number
n € N of times, we denote it by 37 f (taking 39 = 1, the identity). The flow derivative can be related to
the exterior as follows.

_ . (@) - f(p)
9,f(p) = lim —=———r——==

tv _ ov
i F@° ) = £@7())
t—0 t
d
= 312" (P)izo
= Df|<1>tv(p)(q’tv(l’))|t:0
=Df|p(v(p))
= df|[,(v(p)).
When the manifold M is given a (Riemannian) metric field (-, - ), the gradient V of a scalar field

f is defined by duality with the exterior derivative d as (V f( p)|p := df]p, which means that, for every
tangent vector v € TM| ps

dflp(v) = (Vf(p), v)p.

In this case, the flow derivative d,f(p) can be expressed using the gradient of the scalar field f as

8,f(p) =V (), v(P))p-

2 Piecewise smooth vector fields

Definition 2.1. Let M be a d-dimensional €™*!-manifold. A switching submanifold of M is an
embedded 1-codimensional €™*!-submanifold X of M for which there exists an open neighborhood
Us C M of X in M and a €"*!-smooth function h : Us — R such that 0 is a regular value of h and
h~1(0) = .

1. The upper neighborhood (or upper side) of X is =, :== h™1(R,)
2. The lower neighborhood (or lower side) of X is X_ := hi '(R ).

The regular region of M relative to X is the open €"*1-submanifold M \ X. A switching point is a point
in p € X and a regular point is a point in M \ X.

Question 2.1. Can an embedded 1-codimensional connected submanifold of M always be given
as the preimage of a regular value of a €"*!-smooth function? Is this condition necessary in the
definition of a switching manifold?

This means that a piecewise smooth vector field v: M — TM is a €"*!-smooth vector field on
the regular region M \ 2, and may have discontinuities only on the switching manifold X. We will
never take into consideration the value of v on X, but rather define a diferent vector field on part of it,
called the sliding vector field, and ignore its definition on the rest of it.



2.1 Regions of the switching manifold

The (Lie) flow derivative of a function h : M — R by the flow of a vector field v: M — TM at a point
p EMis
tv
5 h(p) o lim @) = (D)
t=0 t

The flow derivative of h by the flow of v is another function d,h: M — R, which can be further
differentiated along the flow of a vector field. If we differentiate by the same vector field v a number
n of times, we denote 0% h.

When the manifold M is given a (Riemannian) metric field (-, - ), the flow derivative 3,h(p) can
be expressed using the gradient of the function & as

d,h(p) = (Vh(p), v(p))p-

2.1.1 Order of contact with the switching manifold

We wish to classify the points of the switching manifold X acording to how the trajectories of the
flows of the fields upper and lower vector fields v, and v_ intersect 2. To this end, let p € Us be a
point in the neighborhood of ¥ and consider the the real function

hy () = h(@"+(p)),

which is defined for ¢ in an e-neighborhood |—e, €[ of 0.

This function gives the ‘height’ of the trajectory of p by the flow of v, from the switching manifold
%, in which the height is interpreted according to the function h. Its derivative gives us information of
how this trajectory intersects X at the point p. It can be expressed relatively to the derivative of h by
the flow of v, as follows.

The derivative of h, is

. d
I (0) = Dhlare g ( 524 ()) = 30, @ (o),

so its derivative at t = 0 is h,.(0) = d,, h(p). By induction we obtain that its n-th derivative at t = 0 is

d n
() Ao =oatne)
The same can be done for the lower vector field v_ using the function

h_(t) = h(®"~(p)).
We are ready to define the order of contact of the point p.

Definition 2.2. Let M be a €™+1-manifold, = a switching submanifold of M, v a Z-piecewise gmtl.
smooth vector field on M and p € Us a point in the neighborhood of X. The order of upper X-contact
(or upper multiplicity) of p is

c; = inf{c € N | d h(p) + 0}

and the order of lower 2-contact (or lower multiplicity) of p is

c_:=inf{c € N |35 h(p) £ 0}.



Since 89, h(p) = 87_h(p) = h(p), points which are in the regular region M X (more specifically
in X, U X_, the upper and lower regions of X) are the points that have both orders of contact equal
to 0, and points which belong to > have both orders of contact greater than 0. A singularity p of the
upper vector field v, satisfies v, (p) = 0, so its flow trajectory is stationary. This implies that, for every
m € N, 37h(p) = 0. If p € X, this means that its order of upper contact is co. The same goes for
the lower vector field v_.

Question 2.2. Is it possible to have a point p € X that has order of upper/lower contact equal to oo
but is not a singularity of the upper/lower vector field?

On the next subsections, we classify the points with finite positive order of contact according to
their contact with the switching manifold from each of the positive and negative sides.

2.1.2 Crossing region

Definition 2.3 (Crossing region). Let M be a €"*!1-manifold, ¥ a switching submanifold of M and v
a X-piecewise €"*!-smooth vector field on M. The crossing region of X is the set

2¢:={p e x|d, h(p)3, h(p) > 0}.
A crossing point is a point p € X°. The crossing region X° can be divided into two regions.
1. The upward crossing region of X is the set
It ={pe x|, h(p)>0}={p € x93, h(p) > 0}

An upward crossing point is a point p € X*°,
2. The downward crossing region of X is the set

I=¢:={pex°|3, h(p) <0} ={pe€x°|d, h(p) <O}

A downward crossing point is a point p € X~°.

=

Z'+C Z_C
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/

(1) An upward crossing point p € Z+€. (2) A downward crossing point p € X~¢.

Figure 1. The crossing region X¢.

2.1.3 Sliding region

Definition 2.4 (Sliding region). Let M be a "*!-manifold, X a switching submanifold of M and v a
X-piecewise €™*1-smooth vector field on M. The sliding region of X is the set

2% :={p € 2|8, h(p)3, h(p) <O}

A sliding point is a point p € 25. The sliding region X® can be divided into two regions.



1. The unstable sliding region (or escaping region) of X is the set
X% ={pex*[9, h(p) >0} ={p € 2|3, h(p) <0}

An unstable sliding point (or escaping point) is a point in p € ZUS.
2. The stable sliding region (or accessing region) of X is the set

2% :={peX®[d, h(p) >0} ={p € 2°|9, h(p) <O}

A stable sliding point (or accessing point) is a point in p € 255,

vy -
Zus ZSS
p p
v vy
//
(1) An unstable sliding point p € ZUS. (2) A stable sliding point p € X55.

Figure 2. The sliding region 25.

2.1.4 Tangency region

Definition 2.5 (Tangency region). Let M be a €*!-manifold, X a switching submanifold of M and
v a Z-piecewise B"*!-smooth vector field on M. The tangency region of X is the set

zt={p € 2|9, h(p)}d,_h(p) =0}
A tangency point is a point p € X*. The tangency region X! can be divided into two regions.
1. The simple tangency region of X is the set
Zti={pe x93, h(p) ¥ 0}u{p € Z'|3,_h(p) ¥ O}

A simple tangency point is a point p € Z5t.
2. The double tangency region of X' is the set

34 :={pe '3, h(p) =0=3, h(p)

A double tangency point is a point p € X9t
Folds and cusps, visible and invisible We now classificate tangency points according to whether
they can be reached with the flow of the vector field on the regular region.

Definition 2.6 (Visible and invisible tangencies). Let M be a €*!-manifold, X a switching subman-
ifold of M and v a Z-piecewise €™*1-smooth vector field on M.

1. An (upper/lower) visible tangency point is a tangency point p € X' for which there exists
¢ € R, such that at least one of the following holds:



1.1. (Accessible) For every t € ]—¢,0[, ®"=(p) € Z,.
1.2. (Escapable) For every t € 10,¢[, ®""«(p) € X,.

A visible tangency point is tangency point that is upper visible or lower visible.

2. An (upper/lower) invisible tangency point is a tangency point p € Xt for which there exists
¢ € R, such that, for every ¢ € ]—¢,¢[ ~ {0}, @'"(p) € Z;. An invisible tangency point is a
tangency point that is both upper invisible and lower invisible.

Definition 2.7 (Fold and cusp tangencies). Let M be a €"*!-manifold, X a switching submanifold
of M and v a Z-piecewise €"*1-smooth vector field on M.

1. An (upper/lower) fold tangency point is a tangency point p € X' whose order of (upper/lower)
contact ¢, with X' is even.

2. An (upper/lower) cusp tangency point is a tangency point p € X' whose order of (upper/lower)
contact ¢, with X' is odd.

The function 9,, h has the same sign at each side of a cusp tangency point, and has opposite
signs at each side of a fold tangency point. A simple analysis of the concavity of the functions
h.(t) = h(®"=(p)) at 0 shows the following properties of folds and cusps.

Proposition 2.1. Let M be a €"*'-manifold, X a switching submanifold of M and v a Z-piecewise
®"*-smooth vector field on M.

1. An (upper/lower) fold tangency point p € X' with order of upper contact c,. is (upper/lower)
visible (both accessible and escapable) if J_raS; h(p) > 0, and upper invisible if iaff;h(p) <0.

2. An (upper/lower) cusp tangency point is (upper/lower) visible. It is accessible if +9,, h(p) < 0,
and escapable if +3,_h(p) > 0. B

Visible Invisible
Accessible Escapable
Fold +3v=h(p) > 0 +3*h(p) < 0

Cusp =+dy*h(p) <0 #*3y*h(p) >0 —

Table 1. Visibility of fold and cusp tangency points given by PROPOSITION 2.1. The sign
+ indicates the side of X relative to which the tangency point p is a visible/invisible
fold/cusp.

Definition 2.8 (Accessible and escapable points). Let M be a €*!-manifold, X a switching subman-
ifold of M and v a Z-piecewise €™*1-smooth vector field on M.

1. An upper (resp. lower/centrally) accessible switching point is a switching point p € X for which
there exists ¢ € R, such that, for every t € ]—¢,0[, ®"+(p) € X, (resp. ®"-(p) € ~_/
®'(p) € X). An inaccessible switching point is a switching point that is not accessible;

2. An upper (resp. lower/centrally) escapable switching point is a switching point p € X for
which there exists € € R such that, for every t € 10,¢[, ®"+(p) € X, (resp. ®""-(p) € Z_ /
®"o(p) € X). An inescapable switching point is a switching point that is not escapable.

Transversality of double tangencies In the following definition, <(v,(p), v_(p)) is the angle
between the vectors v, (p) and v_(p).



Simple fold Accessible Escapable

Visible

Invisible

A
/N

Table 2. Simple fold tangency points.

Definition 2.9. Let M be a €"*1-manifold, X a switching submanifold of M and v a 2-piecewise
®™*1-smooth vector field on M. A double tangency point p € X9t is

1. cooriented if <(v(p),v_(p)) = 0.
2. transverse if 0 < <(v.(p),v_(p)) < 7.
3. contraoriented if <(v,(p),v_(p)) = 7.

Notice that transverse double tangencies p € X9t can only occur when dim(M) > 3 because
otherwise dim(X) < 1, so the vector fields v, (p) and v_(p) have to be parallel.

2.1.5 Topological properties of the regions of the switching manifold

Proposition 2.2. Let M be a 8"*'-manifold, X a switching submanifold of M and v a Z-piecewise
®"*-smooth vector field on M.

1. the upper and lower crossing regions X2*¢ and X~ and the stable and unstable sliding regions X5
and XYS are relatively open in %;

2. the tangency region X' is relatively closed in X and is the boundary 3(=¢ U X%) of the crossing and
sliding regions in X;

3. the simple tangency region ' is relatively open in X\;

4. the double tangency region X9t is relatively closed in X' and is the boundary 3X%t of the single
tangency region in 3.

2.2 Structural stability
2.3 Sliding vector field

We are now going to define a vector field on the sliding manifold X%, called the sliding vector field vy.
Filippov’s convention stablishes that this vector field, at a tangency point p € X%, must be the convex
combination of the vectors v, (p) and v_(p) which is tangent to to 2S. Notice that, since p € X5, then
9,, h(p)d,_h(p) < 0,509, h(p) and d,_h(p) have oppostive signs, which means that v, (p) and v_(p)



Double fold Cooriented Transverse Contraoriented

Visible

Visible-invisible

Invisible

Table 3. Transversality of double fold tangency points.

point to opposite sides of X%, hence there is always a convex combination of them that is tangent to
25, Let us calculate explicitly the value of the sliding vector field v, relative to the upper and lower
vector fields v, and v_.

Proposition 2.3. Let M be a €™+-manifold, X a switching submanifold of M, v a =-piecewise €™+!-
smooth vector field on M and p € X5 a sliding point. The convex combination of the vectors v, (p) and
v_(p) that is tangent to X at p is

5, h(p) 0., h(p)
W)= 5, ) - o, ) P 5 e o) P

Proof. A convex combination of v, (p) and v_(p) is given, for some s € [0, 1], by

cs(p) = (1 = s)vy(p) + sv_(p).

If this convex combination is tangent to X, it must satisfy 0 = (Vh(p),c,(p)) = 9
R-linearity of the flow derivative d in the vector field argument,

0 = 8¢ y(pyh(p) = (1 — $)3, h(p) + 53,_h(p) = 3, h(p) + s(3,_h(p) — 8, h(p)).
Since p € 2°, then 9,, h(p)d,_h(p) < 0, hence 8, h(p) — 9,_h(p) * 0, so it follows that

()
= 5, h(p) — 3, h(p)’

Cs(p)h(p), so by the




If 9,, h(p) > 0, then 9,_h(p) < 0, s0 3, h(p) —3,_h(p) > 0and 9, h(p) < 9, h(p) —3,_h(p).
From this we obtain
9, h(p)
<1
0, h(p) — 8,_h(p)
If 9,, h(p) < 0, then d,_h(p) > 0, so 8, h(p) — 9,_h(p) < 0and 3, h(p) > 9,, h(p) — 3,_h(p).
From this we obtain
9,, h(p)
<1
9,, h(p) —9,_h(p)
In both cases, 0 < s < 1. For p € X5, either d,,h(p) = 0ord, h(p) = 0, but not both, so
d,, h(p) —9,_h(p) ¥ 0 and we obtain s = 0 or s = 1, respectively. We conclude that

—0,_h(p) 3,,h(p)
5 =8, i Pt s —o, i P ™

0<

0<

cs(p) = (1 = s)vi(p) +sv_(p) =

Notice that, for a sliding point p € 25, it holds that d,, h(p)d,_h(p) < 0, so 9, h(p) and 9,_h(p)
have different signs and therefore 9,, h(p) —9,_h(p) # 0. For simple tangency points, it holds that
either 3, h(p) # 0 and 9, h(p) = 0, or 3,,h(p) = 0 and 3, h(p) F O, therefore we also obtain
d,,h(p) —3,_h(p) + 0.

Definition 2.10. Let M be a €™*+!-manifold, X a switching submanifold of M and v a Z-piecewise
®"™*1-smooth vector field on M. The sliding vector field on 5 U 5t is the vector field v, : 25 U Z5¢ —
T(Z® U 25Y) defined for each p € X5 U 25t by

() —3,_h(p) ) 9,, h(p) )
PP 5 k) — 0, h(p) T T 8, hp) — 0, h(p) P

Question 2.3. What happens to the sliding vector field vy near a singularity of the upper or lower
vector fields that lies on X2

Proposition 2.4. Let M be a €™*-manifold, X a switching submanifold of M and v a Z-piecewise
®"™*-smooth vector field on M. The sliding vector field v, : =5 — TZS is €™-smooth.

Proof. This is a direct consequence of the definition of v, since 9, h and 9,_h are ‘6™ -smooth scalar
fields. |

Definition 2.11. Let M be a €™*+!-manifold, X a switching submanifold of M and v a Z-piecewise
®"*1-smooth vector field on M. A pseudo-equilibrium of v is an equilibrium of the sliding vector
field vy: a point p € X5 U X5t such that vy(p) = 0.

2.4 Piecewise smooth orbits

Before we define piecewise smooth orbits that are integral solutions of a piecewise smooth vector
field, we just fix terminoly and notation for the concatenation of two trajectories. For that, we denote
the lower and upper extremes of an interval I C R by d_I := min o and 9, I := max dI, respectively.

Definition 2.12. Let X be a (Hausdorff) topological space, x € X a point, I,I' C R intervals with
ty:=0,I=0_I''andy: I - Xand y': X — continuous paths such that

= li t)y= 1l '(1).
b Mlghy() t\%flpy()

10



The concatenation of y with y’ at p is the trajectory

yuy t Tuft,jul' — X

yit) tel
t—yuy () :=4x t=ty
y'(t) ter.

Proposition 2.5. Let X be a (Hausdorff) topological space, x € X a point, I,I' C R intervals with
ty:=0,I=0_I'andy: I — Xandy' : X — continuous paths such that

= li )= lim y'(¢).
x t/lrarily() t\léflpy()

The concatenation yUy' : IU{t,}UI' — Xis a continuous path.

Definition 2.13. Let M be a €™*+!-manifold, X a switching submanifold of M and v a Z-piecewise
®"™*1-smooth vector field on M. A piecewise smooth orbit of v is a trajectory y : I — M that satisfies
the following local conditions: for every t, € I and p := y(t;), there exists € € R, such that

1. (Regular orbit) If p € M~ Z, then, for every t € |—¢,¢[, y(t; + t) € M ~ ¥ and

y(to + 1) = @™(p).

That is, y is locally the flow of v.
2. (Crossing orbit) If p € X€, then, for every ¢t € |—¢, e[ ~ {0}, y(t; +t) € M~ ¥ and

¥(to + 1) = @"(p).
That is, y is locally a concatenation at p of the flow of v on the upper and lower regions of X.
3. (Sliding orbit) If p € X3, then one of the following options hold:
3.1. (Regular sliding orbit) For every t € |—¢, ¢, y(t; + t) € 25 and

¥(to + 1) = @™ (p).
That is, y is locally the flow of v.

3.2. (Superior escaping sliding orbit) For every t € |—¢,0], y(t, + t) € X", for every
t €10,¢e[,y(to+t) € M~ X, and

®o(p), t<0

y(ty +1) = {q;‘”(p) t>0

That is, y is locally a concatenation at p of the flows of vy and v,.
3.3. (Inferior escaping sliding orbit) For every t € |—¢, 0], y(t;, +t) € XU, forevery t € 10, [,
y(to +t) € M~ X, and
®vo(p), t<0
to+1) =
7o+ D) {fb‘”—(p) >0

That is, y is locally a concatenation at p of the flows of vy, and v_.
3.4. (Superior accessing sliding orbit) For every ¢t € ]—¢,0[, y(ty + t) € M\ Z, for every
t € [0,¢[, y(ty + t) € 255, and

o+(p), t<0

yo +10) = {(D“’O(p) >0

That is, y is locally a concatenation at p of the flows of v, and v

11



3.5. (Inferior accesing sliding orbit) For every t € ]—¢,0[, y(t; + t) € M\ X, for every
t € [0,¢[, y(ty +t) € 255, and

dV+(p), t<0
Yo +ny=12 P
do(p) t>0

That is, y is locally a concatenation at p of the flows of v_ and v,.

4. (Tangency point) If p € ¢, the orbit is a concatenation at p of an orbit of v, v_ or vy — if pis
upper, lower or centrally accessible, respectively — or of a sationary orbit — if p is inaccessible
— with an orbit of v, v_ or vy — if p is upper, lower or centrally escapable, respectively — or
with a sationary orbit — if p is inescapable.

A maximal piecewise smooth orbit of v is a piecewise smooth orbit of v that cannot be extended to
a strictly larger interval domain.

This means that a piecewise smooth orbit of v is a continuous piecewise 6™ +!-smooth trajectory
on M, with points of non-smoothness only on the switching manifold .

Question 2.4. What are the types of tangency points and concatenations that can occur together?

Coding piecewise smooth orbits As a consequence of our definition of piecewise smooth orbits
for the piecewise smooth vector field v, we do not have uniqueness of solutions, neither for positive
nor for negative time. This is so because Filippov’s convention establishes that the piecewise vector
field v should be understood as been set valued on the switching manifold X, and for some particular
points on X we can define the sliding vector field.

Nontheless, we still have some regularity, some control over the behavior of orbits Besides the
points of concatenation of regular orbits, the orbit is uniquely defined by the flows of the upper vector
field v,, the lower vector field v_ or the sliding vector v,. DEFINITION 2.13 implies that for each
piecewise smooth orbit y of v defined on an interval I C R (we assume 0 € I for simplicity), there
exists a sequence (q;, 0;) of switching points q; € ¥ and signs o; € {1, —1} that indicates the points of
concatenation and sides of X this concatenation occurs.

These points can be crossing, sliding, or tangency points. For our purposes, we ignore crossing
points, since the orbit does not loose uniqueness at them. We will focus on sliding points, and tangency
points on their closure. Especifically, we distinguish accessing points 2§ and escaping points XS
because the orbit looses uniqueness at escaping points when going forward, and at accessing points
when going backward. Precisely, we state PROPOSITION 2.6, but first we define some terms that will
ease its formulation.

Definition 2.14. Let M be a €"*!-manifold, X a switching submanifold of M and v a Z-piecewise
®™+1l_smooth vector field on M. Consider a piecewise smooth orbity: I - Mof v, t € I°, and
o € {1,—-1}. We say

1. y accesses X5 from X, through the point a € (X5%)® at time 7 when y(7) = a and there exists
€ € R, such that, forevery t € |t —¢, [, y(t) € 253

2. y escapes X" to X, through the point e € (Z"5)* at time T when y(7) = e and there exists
€ € R, such that, forevery t € |r,7 + ¢, y(t) € X,.

Proposition 2.6. Let M be a €™*'-manifold, X a switching submanifold of M and v a Z-piecewise
B"*-smooth vector field on M. For each piecewise smooth orbity : I — M of v (assume that 0 € I for

simplicity),
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1. there exist a discrete interval I, C Z, a sequence a : I, — (X%%)° of accessing sliding points (or
tangency points in their closure), a sequence o,(-) : I, — {1, —1} of signs, and a strictly increasing
sequence 7,(-) : I, — I of times which satisfy that

L1. foreachi € I, y accesses 2% from X, _(;y through the point a(i) at time 7,(i);
1.2. ifi—1 € I, the last time y accessed X5 before 7,(i) was at 7,(i — 1);
1.3. =1 < 7,(0) < 0 and 1, is maximal with these properties;

2. there exist a discrete interval I, C Z, a sequence e: I, — (X")° of escaping sliding points (or
tangency points in their closure), a sequence o,(-) : I, — {1, —1} of signs, and a strictly increasing
sequence 7,(-) : I, — I of times which satisfy that

2.1. foreachi € I,, y escapes X% to X ;) through the point e(i) at time 7,(i);
2.2. ifi+1 €I, the first time y escapes X" after t,(i) is at 7,(i + 1);
2.3. —1 < 7,(0) < 0 and I, is maximal with these properties.

3 Topological dynamics of piecewise smooth vector fields
3.1 Topological transitivity
4 Orbit spaces

4.1 Orbit space and orbit space flow

Definition 4.1. Let M be a €*+!-manifold, X a switching submanifold of M and v a Z-piecewise
®"™*1-smooth vector field on M. The orbit space of v is the set of all maximal piecewise smooth orbits
of v:

M :={y: I, - M|y is a maximal piecewise smooth orbit of v}.

Notice that the orbit space M does not depend only on the manifold M, but also on the piecewise
smooth vector field v, so this is an abuse of notation. We do this because the notation for the sets M
and M resemble each other.

Definition 4.2. Let M be a €™*+!-manifold, X a switching submanifold of M and v a piecewise
smooth vector field on M. The flow domain on M is the set

Dg = I, x {(y} CRx M.
yEM

The flow on M induced by v is the transformation
d: DCI) — M
ty)—o@y): I, —-t—M
t'— y(t+1t).
When every maximal piecewise smooth orbit y € M is defined on R, this simplifies to the flow
®:RXM—M
t.y) — @) : R—M
t'— y(t+1t).

We will show that this is a continuous flow after we introduce a topology on M.
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4.2 Metric space structure of the orbit space

We now take in the manifold M a compatible distance function | -, - | induced by a Riemannian metric
tensor ( -, - ). We will also assume that the the piecewise smooth vector field v is bounded, that is, its
supremum norm is finite:

[[vll = sup [v(p)| < co.

peM
This implies that the sliding vector field v is also bounded. We also assume |v|| > 0. We may
ocasionally assume that v is Lipschitz continuous instead of bounded. This menas that its dilation is
finite: .
<<V>> = sup |V(p ) - V(p)| < 0.
p+p’'eM |p’ p’l

Definition 4.3. Let M be a €"*!-manifold with Riemannian distance | -, - |,  a switching subman-
ifold of M and v a bounded piecewise smooth vector field on M. The (supremum) distance on M
induced by | -, - | is the function

-, : M x M — R
¥0:1) — oo nll == 2711 sup Jy(0), n(®)l.

iez i<t<i+1

4.3 Topological transitivity, above and below

4.4 Topological entropy
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