
Axiomas da Categoria dos Conjuntos

Pedro G. Mattos

𝟘 𝟙 𝟚 ℕ

+ × ⪫ ⤎↠

1



Sumário

Categoria dos Conjuntos 3

Lista dos axiomas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

0 Vazio 4

1 Ponto 4

1.0 Elementos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Valores de transformações em elementos e funtorialidade . . . . . . . . . . . . . . . . 4

2 Soma 5

2.1 O axioma da soma e notações . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Propriedades algébricas da soma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Soma de transformações . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Par 7

3.1 Monomorfismos, contenção e subconjuntos . . . . . . . . . . . . . . . . . . . . . . . . 7

3.2 Transformação indicadora e objeto indicador . . . . . . . . . . . . . . . . . . . . . . . 9

3.3 O par e o axioma da bivalência . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4 Imagem inversa e imagem direta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.5 União e interseção . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.6 Definição de subconjunto a partir de proposição lógica? . . . . . . . . . . . . . . . . . 10

4 Produto 10

4.1 O axioma do produto e notações . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2 Propriedades algébricas do produto . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.3 Produto de transformações e transposição de argumentos . . . . . . . . . . . . . . . . 11

4.4 Epimorfismos e transformações sobrejetivas . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Exponencial 12

5.1 O axioma da exponencial e notações . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5.2 Propriedades algébricas da exponencial . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.3 Representação de transformações em 𝐸𝐵 . . . . . . . . . . . . . . . . . . . . . . . . . . 15

5.4 Representação de subconjuntos em 𝐶𝟚 . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Infinito 17

6.1 Axioma do infinito e construções básicas . . . . . . . . . . . . . . . . . . . . . . . . . 17

6.1.1 Composição iterada de dinâmica . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.2 Aritmética . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.2.1 Adição . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.2.2 Multiplicação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.2.3 Potenciação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

7 Escolha 21

Referências 22

2



Categoria dos Conjuntos

A negação lógica de uma proposição 𝑃 será denotada por “ ̄𝑃” (lê-se “não é verdade que 𝑃”), a conjunção

lógica de proposições 𝑃 e 𝑃′ por “𝑃 ⊓ 𝑃′” (lê-se “𝑃 e 𝑃′”), a disjunção lógica de 𝑃 e 𝑃′ por “𝑃 ⊔ 𝑃′” (lê-se

“𝑃 ou 𝑃′”), a implicação lógica por 𝑃 ⇒ 𝑃′ (lê-se “𝑃 implica que 𝑃′”) e a equivalência lógica por 𝑃 ⇔ 𝑃′

(lê-se “𝑃 é equivalente a 𝑃′” ou “𝑃 se, e somente se, 𝑃′”). O quantificador universal de um predicado 𝑃

sobre uma variável 𝑥 é denotado por “⨅
𝑥
𝑥𝑃” (lê-se “para todo 𝑥, 𝑥𝑃”), e o quantificador existencial

de 𝑃 sobre 𝑥, por “⨆
𝑥
𝑥𝑃” (lê-se “para algum 𝑥, 𝑥𝑃” ou “existe 𝑥 tal que 𝑥𝑃”). Vamos usar também

as abreviações “⨅
𝑥𝑃
𝑥𝑃′” para “⨅

𝑥
[𝑥𝑃 ⇒ 𝑥𝑃′]” e “⨆

𝑥𝑃
𝑥𝑃′” para “⨆

𝑥
[𝑥𝑃 ⊓ 𝑥𝑃′]”. Denotaremos a

igualdade por “=” e a desigualdade por “≠”. De modo geral vamos evitar notação lógica, optando

pelas frases equivalente em língua portuguesa.

Uma categoria é formalizada como uma teoria formal da lógica de primeira ordem com igualdade

na qual as variáveis podem ser de dois tipos: objetos, ou morfismos (também chamados setas).1 A cada

morfismo 𝑓 está associado um objeto𝐶 chamado domínio de 𝑓 e um objeto𝐶′ chamado contradomínio

de 𝑓. Denota-se 𝑓∶ 𝐶 → 𝐶′ e diz-se que “𝑓 é um morfismo de 𝐶 para 𝐶′”. Dados morfismos 𝑓∶

𝐶 → 𝐶′ e 𝑓′∶ 𝐶′ → 𝐶″, existe um morfismo chamado composição de 𝑓 com 𝑓′ cujo domínio é 𝐶 e

cujo contradomínio é 𝐶″, denotado 𝑓′ ∘ 𝑓∶ 𝐶 → 𝐶″. A composição é associativa: dados morfismos

𝑓∶ 𝐶 → 𝐶′, 𝑓′∶ 𝐶′ → 𝐶″ e 𝑓″∶ 𝐶″ → 𝐶‴, vale

𝑓″ ∘ (𝑓′ ∘ 𝑓) = (𝑓″ ∘ 𝑓′) ∘ 𝑓.

Dado um objeto 𝐶, existe um morfismo I𝐶∶ 𝐶 → 𝐶 chamado identidade de 𝐶. A identidade satisfaz,

para todo morfismo 𝑓∶ 𝐶 → 𝐶′, 𝑓 ∘ I𝐶 = 𝑓 e I𝐶′ ∘ 𝑓 = 𝑓.

Lista dos axiomas

A seguir, listamos brevemente os dez axiomas da Teoria Elementar da Categoria de Conjuntos,

inicialmente propostos por Lawvere (cf. [Law64; LR03]).

A Categoria dos Conjuntos é uma categoria que satisfaz:

axioma 0. Existe objeto inicial 𝟘 (vazio).

axioma 1. Existe objeto terminal 𝟙 (ponto).

axioma 1.0. 𝟘 ≢ 𝟙.

axioma 1.1 O ponto 𝟙 separa transformações.

axioma +. Existe soma 𝐶
𝜄0
⟶𝐶+𝐶′

𝜄1
⟵𝐶′.

axioma 2. O par 𝟚 ≔ 𝟙 + 𝟙
1
⟵ 𝟙 é objeto indicador.

axioma ×. Existe produto 𝐶
𝜋0
⟵𝐶×𝐶′

𝜋1
⟶𝐶′.

axioma ⪫. Existe exponencial 𝐸𝐵 × 𝐸
𝜖
⟶𝐵.

axioma∞. Existe infinito contável 𝟙
0
⟶ ℕ

⫦
⟶ ℕ.

axioma 10. (Escolha) Todo epimorfismo tem inversa à direita.

A Categoria dos Conjuntos é denotada 𝔖, seus objetos 𝐶 são denominados conjuntos e seus

morfismos 𝑓∶ 𝐶 → 𝐶′, transformações (ou funções). A classe de transformações de um conjunto 𝐶

para um conjunto 𝐶′ é denotada 𝔖(𝐶, 𝐶′).

1. Podemos mais simplesmente considerar as variáveis representando somente morfismos, assim como na teoria de conjuntos

tradicional de ZFC as variáveis representam conjuntos. Para isso, em vez de falar de um objeto 𝐶 falamos de seu morfismo

identidade I𝐶.
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0 Vazio

Axioma 0 (Vazio). Existe objeto inicial 𝟘, que satisfaz: para todo conjunto 𝐶, existe única transforma-

ção 𝜄𝟘𝐶∶ 𝟘→ 𝐶. Um objeto inicial é chamado um (conjunto) vazio.

Um objeto inicial não é único por definição, mas todos eles são isomorfos entre si. Por isso,

trataremos 𝟘 como único ao usar o artigo definido na expressão “o vazio”.

Proposição 0.0. A transformação 𝜄𝟘𝟘∶ 𝟘→ 𝟘 é a identidade I𝟘.

Demonstração. Segue da unicidade de 𝜄𝟘𝟘. ◼

1 Ponto

Axioma 1 (Ponto). Existe objeto terminal 𝟙, que satisfaz: para todo conjunto 𝐶, existe única transfor-

mação 𝜋𝐶𝟙 ∶ 𝐶 → 𝟙. Um objeto terminal é chamado um (conjunto) ponto.

Esse objeto terminal não é único por definição, mas todos eles são isomorfos entre si. Por isso,

trataremos ele como único ao usar o artigo definido na expressão “o ponto”.

Proposição 1.1. A transformação 𝜋𝟙
𝟙∶ 𝟙→ 𝟙 é a identidade I𝟙.

1.0 Elementos

Definição 1. Seja 𝐶 um conjunto. Um elemento de 𝐶 é uma transformação 𝑥∶ 𝟙 → 𝐶. Denota-se

𝑥 ∈ 𝐶.

Para garantir a não trivialidade da teoria, enunciamos o seguinte axioma.

Axioma 1.0 (Não-degeneração). O vazio não é isomorfo ao ponto:

𝟘 ≢ 𝟙.

Sem esse axioma, o vazio poderia ter elementos, o que implicaria que todos conjuntos são isomorfos.

Proposição 1.2. O conjunto vazio 𝟘 não tem elementos.

Demonstração. Por definição de 𝟘, existe única transformação 𝜄𝟘𝟙∶ 𝟘→ 𝟙 e, por definição de 𝟙, existe

única transformação 𝜋𝟘
𝟙∶ 𝟘→ 𝟙. Isso significa que 𝜄𝟘𝟙 = 𝜋𝟘

𝟙. Chamemos essa transformação de 𝑓.

Suponha, por absurdo, que exista 𝑥∶ 𝟙 → 𝟘. Então a composição 𝑓 ∘ 𝑥∶ 𝟙 → 𝟙 seria igual à

identidade I𝟙 (pois existe única tal transformação pela definição de 𝟙) e a composição 𝑥 ∘ 𝑓∶ 𝟘→ 𝟘

seria igual à identidade I𝟘 (pois existe única tal transformação pela definição de 𝟘), o que mostra que

𝑥 seria um isomorfismo entre 𝟘 e 𝟙, contradizendo o axioma 1.0. ◼

1.1 Valores de transformações em elementos e funtorialidade

Definição 2. Sejam 𝑓∶ 𝐶 → 𝐶′ uma transformação e 𝑥 ∈ 𝐶 um elemento. O valor de 𝑓 em 𝑥 é o

elemento

𝑓(𝑥) ≔ 𝑓 ∘ 𝑥 ∶ 𝟙→ 𝐶′.

Proposição 1.3. Sejam 𝐶
𝑓
⟶𝐶′

𝑓′

⟶𝐶″ transformações. Para todo elemento 𝑥 ∈ 𝐶,

(𝑓′ ∘ 𝑓)(𝑥) = 𝑓′(𝑓(𝑥)).
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Demonstração. Segue da associatividade da composição de transformações e da definição de valor da

transformação em um elemento. ◼

O próximo axioma estabelece a propriedade fundamental das transformações, que diz que trans-

formações são iguais quando ela são iguais em todos elementos.

Axioma 1.1 (Elementariedade). O objeto terminal 𝟙 separa transformações 𝐶
𝑓,𝑓′

⟶𝐶′.

Isto é: se os valores das transformações 𝑓 e 𝑓′ são iguais em todo elemento 𝑥 ∈ 𝐶 (ou seja,

𝑓(𝑥) = 𝑓′(𝑥)), então elas são iguais (ou seja, 𝑓 = 𝑓′).

𝟙 𝐶 𝐶′←

→
𝑥 ←

→
𝑓

←

→
𝑓′

Essa é a propriedade fundamental das transformações. Ela não é satisfeita por qualquer morfismo

em uma categoria. De fato, ela não pode nem mesmo ser enunciada em uma categoria qualquer pois

o conceito de elemento não necessariamente existe.

Proposição 1.4. Um conjunto 𝑆 separa transformações 𝐶
𝑓,𝑓′

⟶𝐶′ se, e somente se, não é vazio.

Notação 1. O axioma 1.1 nos permite definir uma transformação 𝑓∶ 𝐶 → 𝐶′ somente definindo o

valor de 𝑓 em cada elemento 𝑥 ∈ 𝐶. Denotamos isso por

𝑓∶ 𝐶⟶ 𝐶′

𝑐⟼ 𝑓(𝑐),

em que 𝑓(𝑐) representa a definição do valor de 𝑓 num elemento qualquer 𝑐 ∈ 𝐶. Nos referimos a essa

definição como a definição elementar de 𝑓 e dizemos que a expressão acima define 𝑓 elementarmente.

2 Soma

2.1 O axioma da soma e notações

O próximo axioma estabelece a primeira maneira que temos de criar um novo conjunto a partir de

conjuntos dados.

Axioma + (Soma). Sejam 𝐶, 𝐶′ conjuntos. Existem a soma2 𝐶 + 𝐶′ e as inclusões canônicas 𝜄
𝐶,𝐶′

0 ∶

𝐶 → 𝐶+𝐶′ e 𝜄
𝐶,𝐶′

1 ∶ 𝐶 → 𝐶+𝐶′, que satisfazem: para todas transformações 𝑓∶ 𝐶 → 𝑋 e 𝑓′∶ 𝐶′ → 𝑋,

existe única transformação {
𝑓
𝑓′ ∶ 𝐶 + 𝐶

′ → 𝑋 tal que

{
𝑓
𝑓′ ∘ 𝜄

𝐶,𝐶′

0 = 𝑓

{
𝑓
𝑓′ ∘ 𝜄

𝐶,𝐶′

1 = 𝑓′.

2. Também chamada união disjunta.
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Isso equivale ao seguinte diagrama ser comutativo:

𝐶 𝐶 + 𝐶′ 𝐶′

𝑋

←

→
𝜄
𝐶,𝐶′

0

←

→
𝑓

←
→

{
𝑓

𝑓′

←

→𝜄
𝐶,𝐶′

1

←

→ 𝑓′

Quando não houver ambiguidade, as inclusões canônicas serão denotadas 𝜄0 ≔ 𝜄𝐶 ≔ 𝜄
𝐶,𝐶′

0 e

𝜄1 ≔ 𝜄𝐶′ ≔ 𝜄
𝐶,𝐶′

1 e a soma será resumidamente denotada

𝐶
𝜄0
⟶𝐶+𝐶′

𝜄1
⟵𝐶′.

Notação 2. Usando o axioma 1.1, a transformação {
𝑓
𝑓′ pode ser definida elementarmente para cada

𝑒 ∈ 𝐶 + 𝐶′. Denotamos isso por

{
𝑓
𝑓′ ∶ 𝐶 + 𝐶

′ ⟶𝑋

𝑒⟼ {
𝑓(𝑒) 𝑒 ∈ 𝐶

𝑓′(𝑒) 𝑒 ∈ 𝐶′.

Proposição 2.1 (Unicidade da soma). A soma 𝐶
𝜄0
⟶𝐶+𝐶′

𝜄1
⟵𝐶′ é única a menos de isomorfismo.

2.2 Propriedades algébricas da soma

A proposição a seguir estabelece propriedades básicas da soma em relação a 𝟘.

Proposição 2.2 (Propriedades algébricas da soma). A soma + satisfaz:

1. (Identidade) Para todo conjunto 𝐶,

𝟘 + 𝐶 ≡ 𝐶 ≡ 𝐶 + 𝟘.

2. (Comutatividade) Para todos conjuntos 𝐶, 𝐶′,

𝐶 + 𝐶′ ≡ 𝐶′ + 𝐶.

3. (Associatividade) Para todos conjuntos 𝐶, 𝐶′, 𝐶″,

(𝐶 + 𝐶′) + 𝐶″ ≡ 𝐶 + (𝐶′ + 𝐶″).

2.3 Soma de transformações

Dadas transformações 𝑓∶ 𝐷 → 𝐶 e 𝑓′∶ 𝐷′ → 𝐶′, podemos formar a soma de 𝑓 e 𝑓′ usando a

propriedade universal da soma para definir

𝑓 + 𝑓′ ≔ {
𝜄𝐶∘𝑓
𝜄𝐶′∘𝑓

′ ,
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dada pelo diagrama

𝐷 𝐷 + 𝐷′ 𝐷′

𝐶 𝐶 + 𝐶′ 𝐶′

←

→

𝑓

←

→
𝜄𝐷

←

→𝜄𝐷′

←
→

𝑓+𝑓′

←

→

𝑓′

←

→
𝜄𝐶

←

→

𝜄𝐶′

Definindo 𝑓 + 𝑓′ elementarmente, temos

𝑓 + 𝑓′∶ 𝐷 + 𝐷′ ⟶𝐶+𝐶′

𝑒⟼ {
𝜄𝐶(𝑓(𝑒)) 𝑒 ∈ 𝐷

𝜄𝐶′(𝑓
′(𝑒)) 𝑒 ∈ 𝐷′.

3 Par

Antes de falar sobre o par e o axioma da bivalência, vamos definir transformações injetivas e subcon-

juntos.

3.1 Monomorfismos, contenção e subconjuntos

Monomorfismos são morfismos que são canceláveis à esquerda.

Definição 3. Um monomorfismo é um morfismo 𝐶
𝑖

⟶ 𝐶′ tal que, para todo objeto 𝑋 e todos

morfismos 𝑋
𝑥,𝑥′

⟶𝐶, se 𝑖 ∘ 𝑥 = 𝑖 ∘ 𝑥′, então 𝑥 = 𝑥′.

Definição 4. Uma transformação injetiva é uma transformação 𝑖∶ 𝐶 → 𝐶′ tal que, para todos

𝑥, 𝑥′ ∈ 𝐶, se 𝑖(𝑥) = 𝑖(𝑥′), então 𝑥 = 𝑥′. Denota-se 𝑖∶ 𝐶 ↣ 𝐶′.

Proposição 3.1. Valem as seguintes propriedades:

1. Os monomorfismos da categoria de conjuntos são as transformações injetivas.

2. Seja 𝐶 um conjunto. Toda transformação 𝜄∶ 𝟘→ 𝐶 é um epimorfismo.

3. Seja 𝐶
𝜄0
⟶𝐶+𝐶′

𝜄1
⟵𝐶′ uma soma. As inclusões canônicas 𝜄0 e 𝜄1 são monomorfismos.

4. Seja 𝐶 um conjunto. Todo elemento 𝑥∶ 𝟙→ 𝐶 é um monomorfismo.

Demonstração. 1. Todo monomorfismo é uma transformação injetiva por definição. Toda trans-

formação injetiva é um monomorfismo por causa do axioma 1.1.

2. Exercício.

3. Exercício.

4. Exercício. ◼

Para definirmos subconjuntos de um conjunto𝐶, vamos nos basear na ideia intuitiva de suconjunto

e usar a inclusão canônica associada a cada subconjunto. Diferentes transformações injetivas podem

representar o mesmo subconjunto, e por isso é necessário considerar uma relação de equivalência

para definir mais precisamente um subconjunto.

Definição 5 (Inclusão de transformações injetivas). Seja 𝐶 um conjunto. A relação de inclusão entre

transformações injetivas é definida como: uma transformação injetiva 𝑖∶ 𝐷 ↣ 𝐶 está incluída em uma
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transformação injetiva 𝑖′∶ 𝐷′ ↣ 𝐶 precisamente quando, para alguma transformação 𝑗∶ 𝐷 → 𝐷′,

vale

𝑖 ∘ 𝑗 = 𝑖′.

Denota-se 𝑖 ⊆𝐶 𝑖
′.

Poderíamos de fato definir essa relação entre quaisquer transformações 𝑓∶ 𝐷 → 𝐶 e 𝑓′∶ 𝐷′ → 𝐶.

A relação de inclusão 𝑓 ⊆𝐶 𝑓
′ significa que, para alguma transformação 𝑔∶ 𝐷 → 𝐷′ vale

𝑓 ∘ 𝑔 = 𝑓′.

De certa forma, essa propriedade imita as relações aritméticas de ordem de divisão da aritmética

dos números naturais. No caso geral, se 𝑓′ não for monomorfismo, a transformação 𝑔 não precisa

ser única. A relação dual (invertendo a orientação das setas) formaliza a noção de que 𝑓′ = 𝑔 ∘ 𝑓 é

determinada por 𝑓.

Note que tal 𝑗 da definição é injetiva por causa da seguinte proposição.

Proposição 3.2. Sejam 𝑖∶ 𝐷 → 𝐶 ummonomorfismo e 𝑓∶ 𝐷 → 𝐶 e 𝑗∶ 𝐷′ → 𝐷morfismos tais que

𝑓 ∘ 𝑗 = 𝑖. Então 𝑗 é monomorfismo. (Em geral, 𝑓 não precisa ser monomorfismo.)

A relação de inclusão ⊆𝐶 é reflexiva e transitiva.

Proposição 3.3 (⊆𝐶 é pré-ordem). Seja 𝐶 um conjunto.

1. (Reflexividade) Para toda transformação injetiva 𝑖∶ 𝐷 ↣ 𝐶 vale que 𝑖 ⊆𝐶 𝑖.

2. (Transitividade) Para todas transformações injetivas 𝑖∶ 𝐷 ↣ 𝐶, 𝑖′∶ 𝐷′ ↣ 𝐶 e 𝑖″∶ 𝐷″ ↣ 𝐶 vale

que, se 𝑖 ⊆𝐶 𝑖
′ e 𝑖′ ⊆𝐶 𝑖

″, então 𝑖 ⊆𝐶 𝑖
″.

Porém, ela nem sempre é antissimétrica. Por isso, definimos a relação de equivalência associada à

inclusão como segue. Com respeito às classes dessa equivalência, a inclusão se torna antissimétrica,

portanto uma relação de ordem.

Definição 6. Seja 𝐶 um conjunto. A relação de equivalência entre transformações injetivas é definida

como: uma transformação injetiva 𝑖∶ 𝐷 ↣ 𝐶 é equivalente a uma transformação injetiva 𝑖′∶ 𝐷′ ↣ 𝐶

precisamente quando, 𝑖 ⊆𝐶 𝑖
′ e 𝑖′ ⊆𝐶 𝑖. Denota-se 𝑖 ≃𝐶 𝑖

′.

Proposição 3.4 (≃𝐶 é equivalência). Seja 𝐶 um conjunto.

1. (Reflexividade) Para toda transformação injetiva 𝑖∶ 𝐷 ↣ 𝐶, 𝑖 ≡𝐶 𝑖.

2. (Simetria) Para todas transformações injetivas 𝑖∶ 𝐷 ↣ 𝐶 e 𝑖′∶ 𝐷′ ↣ 𝐶 vale que 𝑖 ≃𝐶 𝑖′ se, e

somente se, 𝑖′ ≃𝐶 𝑖.

3. (Transitividade) Para todas transformações injetivas 𝑖∶ 𝐷 ↣ 𝐶, 𝑖′∶ 𝐷′ ↣ 𝐶 e 𝑖″∶ 𝐷″ ↣ 𝐶 vale

que, se 𝑖 ≃𝐶 𝑖
′ e 𝑖′ ≃𝐶 𝑖

″, então 𝑖 ≃𝐶 𝑖
″.

Em geral, pode existir um isomorfismo entre𝐷 e𝐷′ sem que 𝑖 e 𝑖′ sejam equivalentes. A proposição

caracteriza a equivalência em termos de um isomorfismo entre 𝐷 e 𝐷′.

Proposição 3.5 (Caracterização da equivalência). Seja 𝐶 um conjunto. Para todas transformações

injetivas 𝑖∶ 𝐷 → 𝐶 e 𝑖′∶ 𝐷′ → 𝐶, vale que 𝑖 ≃𝐶 𝑖
′ se, e somente se, existem 𝑗∶ 𝐷 → 𝐷′ e 𝑗′∶ 𝐷′ → 𝐷

tais que 𝑖 ∘ 𝑗 = 𝑖′, 𝑖′ ∘ 𝑗′ = 𝑖, 𝑗′ ∘ 𝑗 = I𝐷 e 𝑗 ∘ 𝑗′ = I𝐷′.

Demonstração. Se existem tais 𝑗 e 𝑗′, então por definição 𝑖 ≃𝐶 𝑖′. Reciprocamente, suponhamos

que 𝑖 ≃𝐶 𝑖′ e sejam 𝑗∶ 𝐷 → 𝐷′ e 𝑗′∶ 𝐷′ → 𝐷 tais que 𝑖 ∘ 𝑗 = 𝑖′ e 𝑖′ ∘ 𝑗′ = 𝑖. Nesse caso vale que

𝑖 ∘ 𝑗 ∘ 𝑗′ = 𝑖′ ∘ 𝑗′ = 𝑖 e 𝑖′ ∘ 𝑗′ ∘ 𝑗 = 𝑖 ∘ 𝑗 = 𝑖′. Como 𝑖 e 𝑖 são injetivas, segue então que 𝑗′ ∘ 𝑗 = I𝐷 e

𝑗 ∘ 𝑗′ = I𝐷′. ◼
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Dessa forma, usando a relação de equivalência≃𝐶, pensamos em um subconjunto 𝑆 de𝐶, denotado

por 𝑆 ⊆ 𝐶, como a classe de equivalência de transformações injetivas 𝑖∶ 𝐷 → 𝐶. Denotamos um

elemento representante dessa equivalência com o abuso de notação 𝜄𝑆∶ 𝑆 → 𝐶 (isso é um abuso de

notação pois 𝑆 denota tanto a tanto a classe de equivalência como o domínio 𝑆).

3.2 Transformação indicadora e objeto indicador

Definição 7. Um indicador (de subconjunto)3 é um conjunto 𝑉 e um elemento t ∈ 𝑉 que satisfazem:

para todo conjunto 𝐶 e todo subconjunto 𝑆 ⊆ 𝐶, existe única transformação 𝜒𝑆∶ 𝐶 → 𝑉 tal que

𝜒𝑆 ∘ 𝜄𝑆 = t ∘ 𝜋𝑆𝟙 .

Tal 𝜒𝑆 é denominada transformação indicadora4 de 𝑆 relativa a 𝐶.

Isso equivale ao seguinte diagrama ser comutativo:

𝑆

𝐶 𝟙

𝑉

←→

𝜄𝑆 ←

→
𝜋𝑆𝟙

←

→𝜒𝑆

←→

t

Em particular, para qualquer elemento 𝑥 ∈ 𝑆, vale que

𝜒𝑆 ∘ 𝜄𝑆(𝑥) = t ∘ 𝜋𝑆𝟙 (𝑥) = t,

ou seja, 𝑥 ∈ 𝑆 se, e somente se, “𝜒𝑆(𝑥) = t”.

3.3 O par e o axioma da bivalência

Usando a soma, podemos criar novos conjuntos a partir dos que já temos. Em particular, 𝟘 + 𝟙 ≡ 𝟙 ≡

𝟙+ 𝟘 (pois 𝟘 é uma identidade para a soma de acorco com proposição 2.2), portanto o novo conjunto

mais simples desses é a soma de 𝟙 com 𝟙, que definiremos depois da proposição.

Definição 8. Um par é um conjunto 𝟚 ≔ 𝟙+ 𝟙. O zero de 𝟚 é o elemento 0 ≔ 𝜄
𝟙,𝟙
0 ∶ 𝟙→ 𝟚 e o um de 𝟚

é o elemento 1 ≔ 𝜄
𝟙,𝟙
1 ∶ 𝟙→ 𝟚.

Na notação resumida da soma temos

𝟙
0
⟶ 𝟙 + 𝟙

1
⟵ 𝟙.

Esse conjunto não é único por definição, mas todos eles são isomorfos entre si. Por isso, trataremos

ele como único ao usar o artigo definido na expressão “o par”.

Proposição 3.6. O par 𝟚 cossepara transformações.

𝐶′ 𝐶 𝟚←

→
𝑓′

←

→
𝑓 ←

→
𝑡

3. Usualmente chamado classificador de subobjeto.

4. Também chamada transformação característica.
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A proposição a seguir afirma que o par tem exatamente dois elementos. Note que essa definição

não depende da definição do número dois (2) em si, ele pode ser feita puramente dentro da lógica5.

Proposição 3.7. O par 𝟚 tem exatamente dois elementos, 0 e 1.

Axioma 2 (Bivalência). O par 𝟚 com o elemento 1 ∈ 𝟚 é um indicador de subconjunto.

𝑆

𝐶 𝟙

𝟚

←→

𝜄𝑆 ←

→
𝜋𝑆𝟙

←

→𝜒𝑆

←→

1

3.4 Imagem inversa e imagem direta

3.5 União e interseção

3.6 Definição de subconjunto a partir de proposição lógica?

4 Produto

4.1 O axioma do produto e notações

Axioma × (Produto). Sejam 𝐶, 𝐶′ conjuntos. Existem o produto 𝐶 × 𝐶′ e as projeções canônicas

𝜋
𝐶,𝐶′

0 ∶ 𝐶 × 𝐶′ → 𝐶 e 𝜋
𝐶,𝐶′

1 ∶ 𝐶 × 𝐶′ → 𝐶′, que satisfazem: para todas transformações 𝑓∶ 𝑋 → 𝐶 e

𝑓′∶ 𝑋 → 𝐶′, existe única transformação (𝑓, 𝑓′)∶ 𝑋 → 𝐶 × 𝐶′ tal que

𝜋
𝐶,𝐶′

0 ∘ (𝑓, 𝑓′) = 𝑓

𝜋
𝐶,𝐶′

1 ∘ (𝑓, 𝑓′) = 𝑓′.

Isso equivale ao seguinte diagrama ser comutativo:

𝑋

𝐶 𝐶 × 𝐶′ 𝐶′

←

→

𝑓

←
→

(𝑓,𝑓′)

←

→

𝑓′

←

→

𝜋
𝐶,𝐶′

0

←

→
𝜋
𝐶,𝐶′

1

Quando não houver ambiguidade, as projeções canônicas serão denotadas 𝜋0 ≔ 𝜋𝐶 ≔ 𝜋
𝐶,𝐶′

0 e

𝜋1 ≔ 𝜋𝐶′ ≔ 𝜋
𝐶,𝐶′

1 , e o prduto será resumidamente denotado

𝐶
𝜋0
⟵𝐶×𝐶′

𝜋1
⟶𝐶′.

5. Da seguinte forma: dizemos que “um conjunto 𝐶 tem exatamente 2 elementos” quando vale

⨆
𝑥∈𝐶

⨆
𝑥′∈𝐶

[𝑥 ≠ 𝑥′ ⊓
⨅
𝑦∈𝐶

[𝑦 = 𝑥 ⊔ 𝑦 = 𝑥′]].

Note que a primeira sentença da disjunção dentro dos colchetes externos afirma que 𝐶 tem no mínimo 2 elementos, enquanto

que a segunda afirma que 𝐶 tem no máximo 2 elementos.
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Em geral, dados elementos 𝑐 ∈ 𝐶 e 𝑐′ ∈ 𝐶′ e transformação 𝑓∶ 𝐶 × 𝐶′ → 𝑌, omitiremos os

parênteses na notação do valor de 𝑓 em (𝑐, 𝑐′), denotando

𝑓(𝑐, 𝑐′) ≔ 𝑓((𝑐, 𝑐′)).

Notação 3. Usando o axioma 1.1, a transformação (𝑓, 𝑓′) pode ser definida elementarmente em cada

elemento de 𝑋. Denotamos isso por

(𝑓, 𝑓′)∶ 𝑋⟶ 𝐶 × 𝐶′

𝑥⟼ (𝑓(𝑥), 𝑓′(𝑥)).

4.2 Propriedades algébricas do produto

O produto satisfaz as seguintes propriedades com relação a 𝟘, 𝟙 e +. As primeiras três propriedades

são análogas às propriedades algébricas da soma, e as outras duas relacionam o produto com a soma e

a identidade da soma.

Proposição 4.1 (Propriedades algébricas do produto). O produto × satisfaz:

1. (Identidade) Para todo conjunto 𝐶,

𝟙 × 𝐶 ≡ 𝐶 ≡ 𝐶 × 𝟙.

2. (Comutatividade) Para todos conjuntos 𝐶, 𝐶′,

𝐶 × 𝐶′ ≡ 𝐶′ × 𝐶.

3. (Associatividade) Para todos conjuntos 𝐶, 𝐶′, 𝐶″,

(𝐶 × 𝐶′) × 𝐶″ ≡ 𝐶 × (𝐶′ × 𝐶″).

4. (Nulidade) Para todo conjunto 𝐶,

𝟘 × 𝐶 ≡ 𝟘 ≡ 𝐶 × 𝟘.

5. (Distributividade) Para todos conjuntos 𝐶, 𝐶′, 𝐷,

(𝐶 + 𝐶′) × 𝐷 ≡ (𝐶 × 𝐷) + (𝐶′ × 𝐷).

Proposição 4.2 (Unicidade do produto). O produto 𝐶
𝜋0
⟵ 𝐶 × 𝐶′

𝜋1
⟶ 𝐶′ é único a menos de

isomorfismo.

4.3 Produto de transformações e transposição de argumentos

Dadas transformações 𝑓∶ 𝐷 → 𝐶 e 𝑓′∶ 𝐷′ → 𝐶′, podemos formar o produto delas usando a proprie-

dade universal do produto para definir

𝑓 × 𝑓′ ≔ (𝑓 ∘ 𝜋𝐷, 𝑓
′ ∘ 𝜋𝐷′).

𝐷 𝐷 × 𝐷′ 𝐷′

𝐶 𝐶 × 𝐶′ 𝐶′

←

→

𝑓

←

→𝜋𝐷 ←

→
𝜋𝐷′

←
→

𝑓×𝑓′

←

→

𝑓′

←

→

𝜋𝐶

←

→
𝜋𝐶′
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Definindo 𝑓 × 𝑓′ elementarmente, temos

𝑓 × 𝑓′∶ 𝐷 × 𝐷′ ⟶𝐶×𝐶′

(𝑑, 𝑑′)⟼ (𝑓(𝑑), 𝑓′(𝑑′)).

Podemos também definir a transposição de argumentos T𝐶,𝐶′ ∶ 𝐶 × 𝐶
′ → 𝐶′ × 𝐶 por

T𝐶,𝐶′ ≔ (𝜋
𝐶,𝐶′

1 , 𝜋
𝐶,𝐶′

0 ),

definida elementarmente por

T𝐶,𝐶′ ∶ 𝐶 × 𝐶
′ ⟶𝐶′ × 𝐶

(𝑐, 𝑐′)⟼ (𝑐′, 𝑐).

𝐶 × 𝐶′

𝐶′ 𝐶′ × 𝐶 𝐶

←

→

𝜋
𝐶,𝐶′

1
←

→
TC,C′

←

→

𝜋
𝐶,𝐶′

0

←

→

𝜋
𝐶′,𝐶
0

←

→
𝜋
𝐶′,𝐶
1

O análogo (ou dual) para a soma da transposição de argumentos do produto não é relevante, pois

se resume à transformação identidade em 𝐶 + 𝐶′.

4.4 Epimorfismos e transformações sobrejetivas

Epimorfismos são morfismos que são canceláveis à direita.

Definição 9. Um epimorfismo é um morfismo 𝑝∶ 𝐶 → 𝐶′ tal que, para todo objeto 𝑋 e todos

morfismos 𝑓, 𝑓′∶ 𝐶 → 𝑋, se 𝑓 ∘ 𝑝 = 𝑓′ ∘ 𝑝, então 𝑓 = 𝑓′.

Definição 10. Uma transformação sobrejetiva é uma transformação 𝑝∶ 𝐶 → 𝐶′ tal que, para todo

𝑒′ ∈ 𝐶, existe 𝑒 ∈ 𝐶 satisfazendo 𝑝(𝑒) = 𝑒′. Denota-se 𝑝∶ 𝐶 ↠ 𝐶′.

Proposição 4.3. Valem as seguintes propriedades:

1. Os epimorfismos da categoria dos conjuntos são as transformações sobrejetivas.

2. Seja 𝐶 um conjunto. Toda transformação 𝜋∶ 𝐶 → 𝟙 é um epimorfismo.

3. Seja 𝐶
𝜋0
⟵𝐶×𝐶′

𝜋1
⟶𝐶′ um produto. As projeções canônicas 𝜋0 e 𝜋1 são epimorfismos.

5 Exponencial

A exponencial de conjuntos é uma forma de representar a classe de transformações 𝔖(𝐸, 𝐵) de um

conjunto 𝐸 para um conjunto 𝐵 dentro da teoria de conjuntos, através de um conjunto denotado 𝐸𝐵, a

exponencial de 𝐸 e 𝐵. Além do conjunto 𝐸𝐵, também é necesssária uma transformação de avaliação,

que, para cada elemento 𝑔 ∈ 𝐸𝐵 e elemento 𝑒 ∈ 𝐸, retorna um elemento 𝑔(𝑒) ∈ 𝐵. A transformação

avaliação permite tratarmos o elemento 𝑔 ∈ 𝐸𝐵 como uma transformação de 𝐸 para 𝐵, calculando seu

valor em cada elemento de 𝐸.

Por fim, esses objetos devem satisfazer uma propriedade universal muito comumente usada na

matemática: dada uma transformação 𝑓∶ 𝑋 × 𝐸 → 𝐵, podemos definir, para cada 𝑥 ∈ 𝑋, uma
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transformação 𝑓𝑥∶ 𝐸 → 𝐵 por 𝑓𝑥(𝑒) ≔ 𝑓(𝑥, 𝑒). Pensamos em cada transformação 𝑓𝑥 como um

elemento de 𝐸𝐵. Então, podemos definir uma família de transformações 𝑓•∶ 𝑋 → 𝐸𝐵 tal que, para

cada 𝑥 ∈ 𝑋, 𝑓•(𝑥) ≔ 𝑓𝑥. Essa família é uma indexação em 𝑋 das transformações 𝑓𝑥 ∈
𝐸𝐵.

A construção explicada acima é tão comumente usada e intuitiva na matemática que é costume

usar o abuso de notação 𝑓 = 𝑓• e, para cada (𝑥, 𝑒) ∈ 𝑋×𝐸, 𝑓(𝑥, 𝑒) = 𝑓𝑥(𝑒). Essa propriedade caracteriza

um objeto exponencial.

5.1 O axioma da exponencial e notações

Axioma ⪫ (Exponencial). Sejam 𝐸, 𝐵 conjuntos. Existem a exponencial 𝐸𝐵 e a avaliação canônica

𝜖∶ 𝐸𝐵 × 𝐸 → 𝐵, que satisfazem: para toda transformação 𝑓∶ 𝑋 × 𝐸 → 𝐵, existe única transformação

𝑓•∶ 𝑋 → 𝐸𝐵 tal que

(1) 𝑓 = 𝜖 ∘ (𝑓• × I𝐶).

Isso equivale ao seguinte diagrama ser comutativo:

𝑋 × 𝐸 𝑋

𝐸𝐵 × 𝐸 𝐵 𝐸𝐵

←→

𝑓•×I𝐸 ←→ 𝑓 ←→𝑓•

←

→
𝜖

A exponencial será resumidamente denotada

𝐸𝐵 × 𝐸
𝜖
⟶𝐵.

O valor da avaliação 𝜖 em um elemeto (𝑔, 𝑒) ∈ 𝐸𝐵 × 𝐸 será denotado

𝑔(𝑒) ≔ 𝜖(𝑔, 𝑒) ∈ 𝐵

e o valor da transformação 𝑓• em um elemento 𝑥 ∈ 𝑋 será denotado

𝑓𝑥 ≔ 𝑓•(𝑥) ∈
𝐸𝐵,

de modo que a fórmula (1) se torna, para cada (𝑥, 𝑒) ∈ 𝑋 × 𝐸,

𝑓(𝑥, 𝑒) = 𝜖 ∘ (𝑓• × I𝐸)(𝑥, 𝑒)

= 𝜖(𝑓•(𝑥), I𝐸(𝑒))

= 𝜖(𝑓𝑥, 𝑒)

= 𝑓𝑥(𝑒).

Notação 4. Usando o axioma axioma 1.1, dada uma transformação 𝑓∶ 𝑋 × 𝐸 → 𝐵, a transformação

𝑓• pode ser definida elementarmente para cada 𝑥 ∈ 𝑋. Denotamos isso por

𝑓•∶ 𝑋⟶
𝐸𝐵

𝑥⟼ 𝑓𝑥 ≔ 𝑓•(𝑥)∶ 𝐸⟶ 𝐵

𝑒⟼ 𝑓𝑥(𝑒) ≔ 𝜖(𝑓𝑥, 𝑒) = 𝑓(𝑥, 𝑒)

ou, de modo mais simples, omitindo as definições de notação,

𝑓•∶ 𝑋⟶
𝐸𝐵

𝑥⟼ 𝑓𝑥∶ 𝐸⟶ 𝐵

𝑒⟼ 𝑓(𝑥, 𝑒).
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Proposição 5.1 (Unicidade da exponencial). A exponencial 𝐸𝐵 × 𝐸
𝜖
⟶𝐵 é única a menos de isomor-

fismo.

A “recíproca” do axioma⪫ também está bem definida na teoria apenas pela existência do produto:

dada qualquer transformação 𝐹∶ 𝑋 → 𝐸𝐵, podemos definir a transformação 𝑓 ≔ 𝜖 ∘ (𝐹 × I𝐶),

elementarmente dada por

𝑓∶ 𝑋 × 𝐸⟶ 𝐵

(𝑥, 𝑒)⟼ 𝐹(𝑥)(𝑒),

que satisfaz automaticamente o diagrama

𝑋 × 𝐸 𝑋

𝐸𝐵 × 𝐸 𝐵 𝐸𝐵

←→

𝐹×I𝐸 ←→ 𝑓 ←→𝐹

←

→
𝜖

A unicidade de 𝑓 segue do axioma 1.1, pois o diagrama acima define ela nos elementos (𝑥, 𝑒) ∈

𝑋 × 𝐸.

5.2 Propriedades algébricas da exponencial

A exponencial satisfaz as seguintes propriedades com relação a 𝟘, 𝟙, + e ×.

Proposição 5.2 (Propriedades algébricas da exponencial). A exponencial satisfaz:

1. Para todo conjunto 𝐵,
𝟘𝐵 ≡ 𝟙.

2. (Absorção à direita para 𝟙) Para todo conjunto 𝐸,

𝐸𝟙 ≡ 𝟙.

3. (Identidade à esquerda para 𝟙) Para todo conjunto 𝐵

𝟙𝐵 ≡ 𝐵.

4. (Absorção à direita para 𝟘) Para todo conjunto 𝐸 ≢ 𝟘,

𝐸𝟘 ≡ 𝟘.

5. (Exponenciação à esquerda) Para todos conjuntos 𝐵, 𝐸, 𝐸′,

𝐸+𝐸′𝐵 ≡ 𝐸𝐵 × 𝐸′𝐵

6. (Distributividade exponencial) Para todos conjuntos 𝐵, 𝐸, 𝐸′,

𝐸×𝐸′𝐵 ≡ 𝐸′(𝐸𝐵)
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5.3 Representação de transformações em 𝐸𝐵

Seja 𝐸 um conjunto, e denotemos o único elemento de 𝟙 por 0 ∈ 𝟙 (esse elemento coincide com a

identidade I𝟙). Existe um isomorfismo entre 𝐸 e 𝟙 × 𝐸. Isso ocorre pelo seguinte.

Pela propriedade universal do produto de conjuntos, o seguinte diagrama comuta:

𝐸

𝟙 𝟙 × 𝐸 𝐸

←

→

𝜋𝐸𝟙

←
→

(𝜋𝐸𝟙 ,I𝐸)

←

→

I𝐸

←

→

𝜋
𝟙,𝐸
0

←

→
𝜋
𝟙,𝐸
1

A transformação (𝜋𝐸𝟙 , I𝐸) é definida elementarmente por

(𝜋𝐸𝟙 , I𝐸)∶ 𝐸⟶ 𝟙 × 𝐸

𝑒⟼ (0, 𝑒).

Essa transformação é um isomorfismo, pois tem inversa

𝜋
𝟙,𝐸
1 ∶ 𝟙 × 𝐸⟶ 𝐸

(0, 𝑒)⟼ 𝑒 = 𝜋
𝟙,𝐸
1 (0, 𝑒).

De fato, a relação𝜋
𝟙,𝐸
1 ∘(𝜋𝐸𝟙 , I𝐸) = I𝐸 vale pela definição de (𝜋𝐸𝟙 , I𝐸); por outro lado, para todo (0, 𝑒) ∈ 𝐸

vale que

(𝜋𝐸𝟙 , I𝐸) ∘ 𝜋
𝟙,𝐸
1 (0, 𝑒) = (𝜋𝐸𝟙 , I𝐸)(𝑒) = (0, 𝑒) = I𝟙×𝐸(0, 𝑒),

portanto (𝜋𝐸𝟙 , I𝐸) ∘ 𝜋
𝟙,𝐸
1 = I𝟙×𝐸.

O isomorfismo 𝐸 ≡ 𝟙 × 𝐸 faz com que cada transformação 𝑓∶ 𝐸 → 𝐵 possa ser associada à

transformação ̇𝑓 ≔ 𝑓 ∘ 𝜋
𝟙,𝐸
1 ∶ 𝟙 × 𝐸 → 𝐵, definida elementarmente por

̇𝑓 ∶ 𝟙 × 𝐸⟶ 𝐵

(0, 𝑒)⟼ 𝑓(𝑒).

A associação contrária é dada para cada ℎ∶ 𝟙 × 𝐸 → 𝐵 por ̂ℎ ≔ ℎ ∘ 𝜋
𝟙,𝐸
1 ∶ 𝐸 → 𝐵, definida elementar-

mente por

̂ℎ∶ 𝐸⟶ 𝐵

𝑒⟼ ℎ(0, 𝑒).

Consideremos agora o diagrama da exponencial 𝐸𝐵 × 𝐸
𝜖
⟶𝐵 com 𝑋 = 𝟙 e ℎ∶ 𝟙 × 𝐸 → 𝐵:

𝟙 × 𝐸 𝟙

𝐸𝐵 × 𝐸 𝐵 𝐸𝐵

←→

ℎ•×I𝐸 ←→ ℎ ←→ℎ•

←

→
𝜖

Seja 𝑓∶ 𝐸 → 𝐵. Note que vale ( ̇𝑓•×I𝐸) ∘ (𝜋
𝐸
𝟙 , I𝐸) = ( ̇𝑓• ∘𝜋

𝐸
𝟙 , I𝐸). Podemos então substituir no lugar

de ℎ nesse diagrama a transformação ̇𝑓 ∶ 𝟙 × 𝐸 → 𝐵 e, usando o isomorfismo (𝜋𝐸𝟙 , I𝐸)∶ 𝐸 → 𝟙 × 𝐸,
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obtemos o diagrama

𝐸 𝟙

𝐸𝐵 × 𝐸 𝐵 𝐸𝐵

←→

( ̇𝑓•∘𝜋
𝐸
𝟙 ,I𝐸) ←→ 𝑓 ←→̇𝑓•

←

→
𝜖

Para cada elemento 𝑒 ∈ 𝐸, o diagrama determina que

𝑓(𝑒) = 𝜖 ∘ ( ̇𝑓•𝜋
𝐸
𝟙 , I𝐸)(𝑒) = 𝜖( ̇𝑓•, 𝑒) = ̇𝑓•(𝑒),

ou seja, ̇𝑓• é uma representação de 𝑓 em 𝐸𝐵. Esse comentários provam a seguinte proposição.

Proposição 5.3. Sejam 𝐸, 𝐵 conjuntos e 𝑓∶ 𝐸 → 𝐵. Existe único elemento 𝑓′ ∈ 𝐸𝐵 tal que, para todo

𝑒 ∈ 𝐸,

𝑓(𝑒) = 𝑓′(𝑒).

Nesse caso 𝑓′ = ̇𝑓•.

Demonstração. Como demonstrado acima, basta tomar 𝑓′ ≔ ̇𝑓•. ◼

Analogamente, também é válida a representação contrária.

Proposição 5.4. Sejam 𝐸, 𝐵 conjuntos e ℎ ∈ 𝐸𝐵. Existe única transformação ℎ′∶ 𝐸 → 𝐵 tal que, para

todo 𝑒 ∈ 𝐸,

ℎ(𝑒) = 𝜖(ℎ, 𝑒) = ℎ′(𝑒).

5.4 Representação de subconjuntos em 𝐶𝟚

Consideremos o caso da exponencial 𝐶𝟚 × 𝐶
𝜖
⟶ 𝟚. Nesse caso específico, temos o seguinte diagrama:

𝟙 × 𝐶 𝟙

𝐶𝟚 × 𝐶 𝟚 𝐶𝟚

←→

𝑓•×I𝐶 ←→ 𝑓 ←→𝑓•

←

→
𝜖

Usando a identificação 𝟙 × 𝐶 ≡ 𝐶, isso significa que, dada 𝑓∶ 𝐶 → 𝟚, existe única 𝑓•∶ 𝟙→ 𝐶𝟚 tal

que 𝜖 ∘ (𝑓• × I𝐶) = 𝑓, ou seja, tal que para todo 𝑐 ∈ 𝐶 vale

𝑓(𝑐) “=” 𝑓(0, 𝑐) = 𝑓0(𝑐).

Isso mostra que as transformações 𝑓∶ 𝐶 → 𝟚 podem ser unicamente representadas por elementos

𝑓0 ∈
𝐶𝟚.

Lembremos agora do diagrama de classificador de subobjeto:

𝑆

𝐶 𝟙

𝟚

←→

𝜄𝑆 ←

→
𝟙𝑆

←

→𝜒𝑆

←→

1

Se tomarmos 𝑓 = 𝜒𝑆, obtemos que, para cada subconjunto 𝜄𝑆∶ 𝑆 → 𝐶, existe única 𝜒𝑆•∶ 𝟙→ 𝐶𝟚

tal que, 𝜖 ∘ (𝜒𝑆• × I𝐶) = 𝜒𝑆; ou seja, para todo 𝑐 ∈ 𝐶,

𝜒𝑆•(𝑐) = 𝜒𝑆(𝑐).
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6 Infinito

O axioma do infinito é o modo de formalizar o conjunto dos números naturais e o processo de definição

recursiva, que tem como uma de suas consequências a indução matemática. Além da existência

de um conjunto ℕ que representa os números naturais, há também uma transformação sucessor

em ℕ e o elemento inicial 0 ∈ ℕ. A propriedade universal que caracteriza esses objetos tem um

caráter intrinsecamente dinâmico: a transformação sucessor nos permite determinar, para qualquer

transformação 𝑓∶ 𝐶 → 𝐶 (dinâmica) e qualquer ponto 𝑥0 ∈ 𝐶 (condição inicial), uma sequência em

𝐶 que representa a órbita de 𝑥0 sob a ação de 𝑓, a qual entendemos que é definida recursivamente

pela regra

𝑥𝑛+1 = 𝑓(𝑥𝑛).

6.1 Axioma do infinito e construções básicas

Axioma∞ (Infinito). Existem o infinito contávelℕ (ou conjunto dos números naturais), o zero 0 ∈ ℕ

e a transformação sucessor ⫦∶ ℕ → ℕ, que satisfazem: para todo conjunto 𝐶, toda transformação

𝑓∶ 𝐶 → 𝐶 e todo elemento 𝑥0 ∈ 𝐶, existe única transformação 𝑥∶ ℕ→ 𝐶 tal que

𝑥(0) = 𝑥0

𝑥 ∘ ⫦ = 𝑓 ∘ 𝑥.

Isso é equivalente a dizer que o seguinte diagrama comuta:

ℕ ℕ

𝟙

𝐶 𝐶
←

→
⫦

←

→

𝑥

←

→

𝑥

← →0

←

→𝑥0

←

→
𝑓

Notação 5. Em geral omitiremos os parênteses no aplicação de ⫦ a um número natural 𝑛 ∈ ℕ,

denotando ⫦𝑛 ≔ ⫦(𝑛).

Definição 11. Um número natural é um elemento 𝑛 ∈ ℕ. O um é o número 1 ≔ ⫦0, o sucessor do

zero, e o dois é o número 2 ≔ ⫦1, o sucessor do um.

A notação ⫦ tem um propósito duplo: de certa forma representa uma seta (sem ponta) orientada

para a direita, indicando que o sucessor de um número 𝑛 é o próximo número à direita de 𝑛 na usual

representação linear horizontal de ℕ orientada para a direita; e também relembra (grosseiramente) os

símbolos “1+” na representação do sucessor de 𝑛 usando a adição + e o número 1, isto é,

⫦𝑛 = 1 + 𝑛.

A transformação 𝑥∶ ℕ→ 𝐶 que aparece no axioma∞ é o que se denomina uma sequência em

𝐶.

Definição 12. Seja 𝐶 um conjunto. Uma sequência em 𝐶 é uma transformação 𝑥∶ ℕ→ 𝐶. Para cada

𝑛 ∈ ℕ, denota-se 𝑥𝑛 ≔ 𝑥 ∘ 𝑛 e (𝑥𝑛)𝑛∈ℕ ≔ 𝑥.
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Considerando cada 𝑛 ∈ ℕ, a condição do axioma∞ se torna

𝑥(0) = 𝑥0,

𝑥⫦𝑛 = 𝑓(𝑥𝑛),

o que deixa claro que 𝑥 é a órbita de 𝑥0 sob a ação da dinâmica 𝑓.

O seguinte lema é uma versão “mais geral” do axioma∞. A intuição dinâmica por trás é imaginar

que agora a dinâmica 𝑓 depende não somente do ponto em 𝐶, mas também do tempo em ℕ. Isso é

uma versão discreta de um sistema não-autônomo de equações diferenciais, e a demonstração envolve

o mesmo tipo de argumento para reduzir um sistema não autônomo a um sistema autônomo.

Proposição 6.1 (Recursão não-autônoma). Para toda transformação 𝑓∶ ℕ × 𝐶 → 𝐶 e todo elemento

𝑥0 ∈ 𝐶, existe única sequência 𝑥∶ ℕ→ 𝐶 tal que

𝑥(0) = 𝑥0,

𝑥 ∘ ⫦ = 𝑓 ∘ (Iℕ, 𝑥);

ou seja, para cada 𝑛 ∈ ℕ,

𝑥(0) = 𝑥0,

𝑥⫦𝑛 = 𝑓(𝑛, 𝑥𝑛).

Demonstração. Defina 𝐷 ≔ ℕ × 𝐶, 𝑦0 ≔ (0, 𝑥0) e

𝑔∶ ℕ × 𝐶⟶ ℕ × 𝐶

(𝑛, 𝑐)⟼ (⫦𝑛, 𝑓(𝑛, 𝑐)).

Pelo axioma∞ para 𝐷, 𝑔 e 𝑦0, existe única sequência 𝑦∶ ℕ→ 𝐷 tal que

𝑦(0) = 𝑦0,

𝑦 ∘ ⫦ = 𝑔 ∘ 𝑦;

ou seja, para cada 𝑛 ∈ ℕ,

𝑦(0) = 𝑦0,

𝑦⫦𝑛 = 𝑔(𝑦𝑛).

Tomando as projeções 𝜋
ℕ,𝐶
0 ∶ ℕ × 𝐶 → ℕ e 𝜋

ℕ,𝐶
1 ∶ ℕ × 𝐶 → 𝐶 da sequência 𝑦, obtemos sequências

𝑖∶ ℕ→ ℕ e 𝑥∶ ℕ→ 𝐶 tais que, para todo 𝑛 ∈ ℕ,

𝑦𝑛 = (𝜋
ℕ,𝐶
0 (𝑦𝑛), 𝜋

ℕ,𝐶
1 (𝑦𝑛)) = (𝑖𝑛, 𝑥𝑛),

e que satisfazem

(𝑖(0), 𝑥(0)) = 𝑦(0) = 𝑦0 = (0, 𝑥0),

(𝑖⫦𝑛, 𝑥⫦𝑛) = 𝑦⫦𝑛 = 𝑔(𝑦𝑛) = 𝑔(𝑖𝑛, 𝑥𝑛) = (⫦𝑖𝑛, 𝑓(𝑖𝑛, 𝑥𝑛)).

Pela unicidade do axioma∞, deve valer 𝑖 = Iℕ. Portanto a sequência 𝑥 é única e satisfaz, para cada

𝑛 ∈ ℕ,

𝑥(0) = 𝑥0,

𝑥⫦𝑛 = 𝑓(𝑛, 𝑥𝑛).

◼
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Proposição 6.2. Existe uma única transformação ⊣∶ ℕ→ ℕ (denominada transformação predeces-

sor) tal que

⊣(0) = 0

⊣ ∘ ⫦ = Iℕ;

ou seja, para cada 𝑛 ∈ ℕ,

⊣(0) = 0

⊣ ∘ ⫦𝑛 = 𝑛.

A definição de conjunto infinito de Dedekind-Peano vale para ℕ. Essa definição diz que um

conjunto ser infinito significa que existe um bijeção entre ele e um subconjunto próprio dele.

Proposição 6.3 (ℕ é infinito). Vale 𝟙+ℕ ≡ ℕ e a transformação sucessor⫦ é injetiva e não é sobrejetiva.

Podemos também provar o postulado do Peano para indução (matemática).

Proposição 6.4 (Indução matemática). Seja 𝐶 ⊆ ℕ um subconjunto tal que

• (Caso zero) 0 ∈ 𝐶;

• (Caso sucessor) Para todo 𝑛 ∈ ℕ, se 𝑛 ∈ 𝐶 então ⫦𝑛 ∈ 𝐶.

Então 𝐶 = ℕ.

Demonstração. Note que temos a inclusão canônica 𝜄𝐶∶ 𝐶 → ℕ e que 𝐶 = ℕ quer dizer que 𝜄𝐶
é isomorfismo. Devemos portanto achar uma inversa 𝑥∶ ℕ → 𝐶 para 𝜄𝐶. A inversa será definida

recursivamente usando o axioma∞. Pelo caso sucessor, podemos definir uma transformação 𝑠∶

𝐶 → 𝐶 tal que

𝜄𝐴 ∘ 𝑠 = ⫦ ∘ 𝜄𝐶.

Pelo caso zero, temos 0 ∈ 𝐶. Portanto segue do axioma ∞ para 𝐶, 𝑠 e 0 que existe única

sequência 𝑥∶ ℕ→ 𝐶 tal que

𝑥(0) = 0

𝑥 ∘ ⫦ = 𝑠 ∘ 𝑥

Então segue que 𝜄𝐶 ∘ 𝑥(0) = 𝜄𝐶(0) = 0 e

(𝜄𝐶 ∘ 𝑥) ∘ ⫦ = 𝜄𝐶 ∘ 𝑠 ∘ 𝑥 = ⫦ ∘ 𝜄𝐶 ∘ 𝑥 = ⫦ ∘ (𝜄𝐶 ∘ 𝑥),

logo segue por unicidade (do axioma∞) que 𝜄𝐶 ∘ 𝑥 = Iℕ. Por outro lado, vale

𝜄𝐶 ∘ (𝑥 ∘ 𝜄𝐶) = (𝜄𝐶 ∘ 𝑥) ∘ 𝜄𝐶 = Iℕ ∘ 𝜄𝐶 = 𝜄𝐶 ∘ I𝐶.

Como 𝜄𝐶 é injetiva (monomorfismo), segue que 𝑥 ∘ 𝜄𝐶 = I𝐶. Concluímos então que 𝑥 é inversa de 𝜄𝐶 e

portanto que 𝐶 = ℕ. ◼

6.1.1 Composição iterada de dinâmica

Consideremos um conjunto 𝐶 e uma transformação 𝑓∶ 𝐶 → 𝐶. O diagrama da exponencial nesse

caso fica

𝟙 × 𝐶 𝟙

𝐶𝐶 × 𝐶 𝐶 𝐶𝐶

←→

𝑓•×I𝐶 ←→ 𝑓 ←→𝑓•

←

→
𝜖
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𝑋 × 𝐶 𝑋

𝐶𝐶 × 𝐶 𝐶 𝐶𝐶

←→

𝑓•×I𝐶 ←→ 𝑓 ←→𝑓•

←

→
𝜖

O seguinte resultado permite representar a composição iterada de uma dinâmica 𝑓∶ 𝐶 → 𝐶 no

conjunto de transformações 𝐶𝐶.

Proposição 6.5 (Composições iteradas de transformação). Sejam 𝐶 um conjunto e 𝑓∶ 𝐶 → 𝐶 uma

transformação. Existe única sequência 𝑓(⋅)∶ ℕ→ 𝐶𝐶 tal que

𝑓(⋅)(0) = I𝐶•

𝑓(⋅) ∘ ⫦ = 𝜖(𝑓•, 𝑓
(⋅) ∘ ⫦);

ou seja, para cada 𝑛 ∈ ℕ, e denotando 𝑓𝑛 ≔ 𝑓(⋅)(𝑛),

𝑓0 = I𝐶

𝑓⫦𝑛 = 𝑓 ∘ 𝑓𝑛.

6.2 Aritmética

Para definir as operações aritméticas usuais emℕ, vamos usar a composição iterada de transformações

(proposição 6.5).

6.2.1 Adição

Definição 13 (Adição). Definimos a adição +∶ ℕ×ℕ→ ℕ (denotada 𝑛+𝑛′) indutivamente a partir

da sucessão ⫦∶ ℕ→ ℕ: para cada 𝑛′ ∈ ℕ,

1. se 𝑛 = 0, define-se 0 + 𝑛′ ≔ 𝑛′;

2. se ⫦𝑛, define-se (⫦𝑛) + 𝑛′ ≔ ⫦(𝑛′ + 𝑛).

Proposição 6.6 (Propriedades algébricas da adição).

6.2.2 Multiplicação

Definição 14 (Multiplicação). Definimos a multiplicação ×∶ ℕ ×ℕ→ ℕ (denotada 𝑛 × 𝑛′) induti-

vamente a partir da adição +∶ ℕ ×ℕ→ ℕ: para cada 𝑛′ ∈ ℕ,

1. se 𝑛 = 0, define-se 0 × 𝑛′ ≔ 0;

2. se ⫦𝑛, define-se (⫦𝑛) × 𝑛′ ≔ 𝑛′ + (𝑛′ × 𝑛).

Proposição 6.7 (Propriedades algébricas da multiplicação).

6.2.3 Potenciação

Definição 15 (Potenciação). Definimos a potenciação ^∶ ℕ ×ℕ→ ℕ (denotada 𝑛𝑛
′
) indutivamente

a partir da multiplicação ×∶ ℕ ×ℕ→ ℕ: para cada 𝑛 ∈ ℕ,

1. se 𝑛′ = 0, define-se 𝑛0 ≔ 1;

2. se ⫦𝑛′, define-se 𝑛⫦𝑛 ≔ 𝑛 × 𝑛𝑛
′
.

Proposição 6.8 (Propriedades algébricas da potenciação).
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7 Escolha

Axioma 10 (Escolha). Todo epimorfismo tem inversa à direita.

𝐶 𝐶′←

↠
←

→
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