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1 Preliminaries

A transformation (or function) f from a set C to a set C’ is denoted f : C — C’ and the composition os
transformations f : C — C'and f': C' —» C” isdenoted f'o f : C — C”. The identity transformation
inCisI=I-: C—-C.

The empty set is denoted 0, the point set, 1 = {0}, and the double set, 2 = {0, 1}. Given a “universe”
set X, the power set of X (the set of all its subsets) is denoted 2%, and the set complement (in X) of a
subset S C X is denoted S = X \ S.

The natural numbers are denoted N and include 0 (zero), and, for every natural number n € N,
the set of the first n natural numbers is denoted [1n] := {n’' € N |n’ < n} ={0,...,n — 1}. The integers
are denoted Z, the rational numbers, Q, and the real numbers, R. The positive, strictly positive, negative
and strictly negative integers are denoted Z, Z.¢, Z<, and Z_, respectively. Analogous notation is
used for other ordered number sets. We denote the infimum of a set S by inf S and its supremum by
sup S.

1.1 Topological spaces

We denote a topological space by X = (X, J"), being X the set of points of the space and J its topology".
The trivial topology on a set X is {0, X} and the discrete topology on X is the power set 2X. We denote
the topological interior of a set S C X by S° and its topological closure by S*. We state some basic
definitions and propositions for later reference. Most of the omitted proofs can be found in the book
Topology, by Munkres [Mun00].

Definition 1.1. Let X be a topological space. A neighborhood of a point x € Xisaset V C X such
that x € V°. A neighborhood of aset S C Xisaset V C Xsuch thatS C V°.

Definition 1.2. Let X be a topological space and x € X. A local neighborhood basis at x is a collection
B C 2% of neighborhoods of x such that, for every neighborhood V' C X of x, there exists some B € B
such that BC V.

Definition 1.3. Let X be a topological space. An isolated pointis a point x € X that has a neighborhood
without other points of the space (that is, {x} is open).

Definition 1.4. A discrete topological space is a topological space X in which every point is isolated.
Its topology is 2%, the discrete topology on X.

Definition 1.5. A perfect (or accumulated) topological space is a topological space X that has no
isolated points.

1.1.1 Separability

We start by defining several notions subsetes of a topological space can be distinguished. The first
notions are not restricted to topological spaces. Let X be a set and S, S’ C X subsetes. They are distinct
when S # S’, which is a logical notion that for sets is equivalent to the existence of an element of one
set that is not an element of the other, and they are disjoint when S N S’ = 0, which is a set theoretic
notion.

Definition 1.6. Let X be a topological space, x, x" € X points, and S, S’ C X subsets.

. We generally use boldface to indicate the space/categorial object X, including its structure (its topology J, distance |-, - |,
binary operation +, ...), while the normal weight font denotes the underlying set X.



1. The points x and x’ are topologically distinct when one of them has a neighborhood that does
not contain the other.

2. The sets S and S’ are nearly separated when each set has a neighborhood that is not a neighbor-
hood of the other. (equivalently, when each is disjoint from the closure of the other)

3. The sets S and S’ are separated when they have disjoint neighborhoods.

4. The sets S and S’ are separated by close neighborhood when they have disjoint closed neighbor-
hoods.

5. The sets S and S’ are separated by continuous function when there exists a continuous function
f: X - RsuchthatS C f~}(0)and S’ C f~1(1).

6. The sets S and S’ are precisely separated by continuous function when there exists a continuous
function f: X — Rsuch that S = f~}(0) and S’ = f~1(1).

Each condition in DEFINITION 1.6 is implied by the following condition. In what follows, we will
use these definition to enunciate and prove many different properties of topological spaces.

Definition 1.7. A punctual (or Ty-separated) topological space is a topological space X in which
distinct points are topologically distinct.

These are the spaces that can be recovered from abstract “topologies without points”.

T,-separated spaces

Definition 1.8. An accessible (or T;-separated) topological space is a topological space X in which
distinct points are nearly separated.

An equivalent definition of an accessible space is a topological space in which, for every point
x € X, the singleton set {x} is closed. This is also equivalent to every finite set being closed.

Proposition 1.1. A topological space X is accessible if, and only if, every finite set F C X is closed.
Lemma 1.2. Let X be an accessible and perfect topological space.

1. There are no non-empty finite open sets F C X.
2. If U C Xis a non-empty open set and F C X is finite, then U \ F is a non-empty open set.

Proof. 1. Let F C X be a finite open set. Suppose, for the sake of contradiction, that F were
non-empty, and take x € F. Notice that the complement of {x} satisfies

xXI=Xn{x}=FUF)n{x}=Fu(Eni{x).

Since F is open, its complement F is closed. Since F is finite, F « {x} = F n {x} would be
finite, hence closed because X is accessible (PROPOSITION 1.1). Then it would follow that {x} is
a union of closed sets, thefore closed, so {x} would be open. This would contradict the fact that

X is perfect, so we conclude that F is empty.
2. Since Fis finite and X is accessible, F is closed (LEMMA 1.2), so U \ F is open. Besides that, U\ F
is also non-empty, since otherwise we would have U C F, so the non-empty open set U would
be a finite, which cannot happen in an accessible and perfect space (by the previous item). W

T,-separated spaces We now define the most important separation property of a topologicl space.
At first glance it may just seem like one among many in the hierarchy of separation properties, but it
becomes evident throughout the study of topological spaces and many other related areas that it is
essential.



Definition 1.9. A separated (or T,-separated, or Hausdorff) topological space is a topological space
X in which distinct points are separated. We also say that J is a separated (Hausdorff') topology on X.

Definition 1.10. A topological space X is separated (Hausdorff) if, and only if, limits of nets are
unique. (In particular, in separated spaces limits of sequences are unique.)

Proposition 1.3. A subspace of a separated topological space is separated.
Proposition 1.4. Let X be a set.

1. The discrete topology 2% on X is separated.
2. If T is a separated topology on X, then every greater (finer/stronger) topology J' 2 J on X is
separated.

T;-separated spaces

Definition 1.11. A regular topological space is a topological space X in which every disjoint point
set and closed set are separated. A T;-separated space is a regular topological space that is separated
(Hausdorff).

T,-separated spaces

Definition 1.12. A normal topological space is a topological space X in which disjoint closed sets are
separated. A T,-separated space is a normal topological space that is separated (Hausdorff).

1.1.2 Bases and countability

Definition 1.13. Let x be a cardinal.

1. A x-generated topological space is a topological space X that admits a basis for its topology of
cardinality x. The case x = N is also called second-countable.

2. A locally x-generated topological space is a topological space X in which every point admits a
local basis of cardinality x. The case ¥ = N is also called first-countable.

Notice that every second-countable space is first countable. To converse is not true; for instance,
an uncountable discrete space is first-countable but it is not second-coutable.

Definition 1.14. Let x be a cardinal. A x-dense topological space is a topological space that admits a
dense set of cardinality x.

The R,-dense spaces are often called “separable” spaces, but we will avoid this terminology because
“separation” and related words are overused in topology, so to avoid confusion we give preference to
the separation axioms of SECTION 1.1.1.

Proposition 1.5. An N-generated topological space X is N,-dense.

Proof. Let B be a countable basis of non-empty open sets and take, for each B € B, a point pg € B.
Then the set D := {pg | b € B} is dense in X. [

Proposition 1.6. Let X be a Hausdorff topological space and x a cardinal. If X is x-dense, then X has
cardinality at most 22", If X is first-countable (locally Ny-generated), then X has cardinality at most 2%,

Proof. Check [Wik25b, § Separability versus second countability]. [ |



1.1.3 Connectedness

Definition 1.15. A connected topological space is a topological space X that does not admit a non-
trivial open partition (or, equivalently, if A, A’ C X are open sets such that AN A’ =0and AUA =X,
then {A, A’} = {0, X}). A disconnected space is a space that is not connected.

Proposition 1.7. Let X be a topological space and S C X a topological subspace. The space S is connected
if, and only if, there is no pair of non-empty open sets A, A’ C X which are disjoint, AUA = S, and
neither one contains a limit point of the other.

Proposition 1.8. Let X and X' be topological spaces and f : X — X' a continuous function. If X is
connected, then f(X) C X' is connected.

Proposition 1.9. Let X be a topological space and € C 2% a collection of connected sets such that, for
everyC,C' € 6, CNC’ £0. Then UCEC’ C is connected.

Definition 1.16. Let X be a topological space and x € X. The connected component of x is the union
of every connected set of X that contains x.

Definition 1.17. A totally disconnected space is a topological space X for which the connected
component of every point x € X is {x}.

Proposition 1.10. Every discrete space is totally disconnected.

Proposition 1.11 (Brouwer’s theorem). Every non-empty, perfect, compact, Hausdorff space with a
(countable?) basis of closed-open sets is homeomorphic to 2°.

Equivalently, every non-empty, perfect, compact, totally disconnected, metrizable topological space is
homeomorphic to 2°.

1.1.4 Compactness

Closed intervals of the real line R have the following important properties: 1. any decreasing sequence
of non-empty closed subsets of a closed real interval has non-empty intersection, 2. every continuous
real function on a closed real interval has a maximum and minimum, 3. every sequence in a closed
real interval has a convergent subsequence, and 4. closed real intervals are bounded (and closed).

Compact spaces are topological spaces that share some of these properties. Every continuous
real function on a compact space has a maximum and minimum, and any decreasing sequence of
non-empty closed sets on a compact space has non-empty intersection. Also, in compact metric
spaces, every sequence has a convergent subsequence. The definition we adopt for compact spaces is
equivalent to the intersection of closed sets property, but using unions of open sets instead, as will be
clear shortly.

Definition 1.18. Let X be a topological sapce. An open cover of X is a collection of open sets € C J
such that X = cee G- An open subcover of an open cover C is a collection § C € that is an open
cover of X.

Definition 1.19. A compact topological space is a topological space X in which every open cover € of
X has a finite open subcover F C C of X. We also say that J is a compact topology on X.

Using the induced subspace topology, we have the following caracterization of compact subspaces.

Proposition 1.12. Let X be a topological space and S C X a subspace. Then S is compact if, and only if,
every open cover of S in X has a finite subcover in X.

Proof. See [Mun00, Lemma 26.1, p. 164]. [ |



As we just mentioned, we can characterize compact spaces with closed sets. This is done by using
using set complements and the logical contrapositive. The dual definition of compactness (by using
set complements) is the following: a compact space is a topological space in whiuch every collection C
of closed sets that has empty intersection has a finite subcollection # C € that has empty intersection.
In this form, this property is not immediately obvious, but by taking the contrapositive, we obtain a
much more useful result: PROPOSITION 1.13. Before presenting it, we define a property in order to
simplify its statement.

Definition 1.20. Let X be a topological space. A collection of subsets with the finite intersection
property is a collection € C 2% such that, for every finite subset ¥ C C,

ﬂF:i:(H).

In particular, a decreasing sequence of closed non-empty subsets C, 2 C; 2 ... has the finite
intersection property.

Proposition 1.13. Let X be a topological space. Then X is compact if, and only if, for every collection of
C of closed subsets with the finite intersection property,

ﬂc#qn.

In particular, in a compact space a decreasing sequence of non-empty closed subsets Co 2 C; 2 ... has
non-empty intersection.

Proof. This basically follows from the definition of a compact space by taking set complements and
the contrapositive. See [Mun00, Theorem 26.9, p. 169] for the details. [ |

It is easy to show that compactness is preserved by continuous functions, which turns out to be
related to the fact that real functions defined on closed real intervals have a maximum and a minimum.

Proposition 1.14. Let X and X' be topological spaces and f : X — X' a continuous transformation. If
X is compact, then f(X) C X' is compact.

Compactness and smallness Compact spaces are, in some sense, “small”. Broadly speaking,
compact spaces can be seen as analogues, in the category of topological spaces, to finite sets in the
category of sets. This sense of smallness is also shared by closed real intervals because they are
bounded, but we will not explore this relation now.

We first relate compactness and finiteness by some immediate properties that generalize the facts
that a single point of the real line is a (trivial) closed interval, and that finite unions of closed real
intervals also share the properties listed in the beginning of this subsection.

Proposition 1.15. The point space 1 is compact, and every finite union of compact subspaces of a
topological space X is compact. Consequently, every finite space is compact.

In a more general direction, we can show that compact topologies are in some sense small.
Proposition 1.16. Let X be a set.

1. The trivial topology {0, X} on X is compact.
2. If T is a compact topology on X, then every smaller (coarser/weaker) topology 7' C T on X is
compact.



Duality of compact and Hausdorff spaces We will compare the “smallness” of compact spaces
with the “largeness” of Hausdorff spaces. Although the definitions of Hausdorff spaces and compact
spaces seem unrelated, and not even formulated in similar terms, there is some kind of duality between
them. The following propositions can be trivially proved from the definitions, but they shed some
light on this duality. This section is based on [Tao09a].

One of the useful properties of closed real intervals is that they are (obviously) closed. One way to
understand the relation between the concepts of closed and compact subsets is by relating them both
in compact spaces and in Hausdorff spaces. The following results show that this relation is dual on
these types of spaces.

Proposition 1.17. Let X be a compact space and S C X a subspace. If S is closed, then it is compact.

Proof. Let F C X be a closed set and € an open cover of F. Since F is closed, its complement Fis open,
soC':=CU {F} is an open cover of X. Since X is compact, there exists an open subcover 8’ C €’

of X. Defining 8 := 8’ ~ {1_?} it follows that 8§ C € is an open subcover of F, which proves that F is
compact. |

Proposition 1.18. Let X be a Hausdorff space and S C X a subspace. If S is compact, then it is closed.
Proof. See [Mun00, Theorem 26.3, p. 165]. [ |

Now notice that PROPOSITION 1.16 shows that the trivial topology is always compact, and that any
topology that is smaller then a compact topology is also compact. Dually, PROPOSITION 1.4 shows that
the discrete topology is Hausdorff, and that any topology that is greater then a Hausforff topology
is also Hausrdorff. PROPOSITIONS 1.4 and 1.16 can be interpreted as meaning that compact spaces
have weaker topologies, while Hausdorff spaces have stronger topologies. Their relation can be better
understood by the next proposition.

Proposition 1.19. Let X be a set, and T and J” topologies on X such that 7 C J". If (X, T") is Hausdorff
and (X,J") is compact, then T = J'.

Proof. Since J° C J”, every closed set in (X, J") is a closed in (X, J") and every compact set in (X, J")
is a compact in (X, J°). PROPOSITION 1.17 implies that every closed set of (X, J”) is compact in (X, J"),
and PROPOSITION 1.18 implies that every compact set of (X, J) is closed in (X, 7). This shows that
(X,T) and (X, J") have the same closed sets, hence the same open sets, therefore 77 = J”. [ |

In particular this implies the following.

Proposition 1.20. Let X be a compact topological space, X' a Hausdor{f topological space, and f :
X — X' a continuous transformation. If f is invertible, then f~! is continuous.

Proof. Let F C Xbe a closed set. We will show that (f~1)~1(F) is closed. The set F is compact because
X is compact (PROPOSITION 1.17), so f(F) C f(X) = X' is compact because f is continuous, which
implis that f(F) is closed because X’ is Hausdorff (PROPOSITION 1.18). Since f is invertible, we have
(f~H~Y(F) = F, so we conclude that (f~!)~!(F) is closed. [

Proposition 1.21. Let X be a Hausdorf{f topological space and (K;);cy a collection of compact subsets of
X. Then Ky, =, K; is a compact set.

Proof. Let C be an open cover of K. We must find a finite subcover of € that covers K. Since X is
Hausdorff, for every i € I the compact set K; is closed (PROPOSITION 1.18), so the intersection K, is
closed. Take i, € I. Then K, is a closed subset of the compact set K;, therefore it is also compact. W

Proposition 1.22. Let X be a non-empty compact Hausdorff topological space. If X is perfect, then X is
uncountable.

Proof. See [Mun00, Theorem 27.7, p. 176]. [



Compact spaces and bases

Product of compact spaces

Proposition 1.23. A product of compact spaces is compact.

1.1.5 Local compactness

Definition 1.21. A locally compact topological space is a topological space in which every point has
a compact neighborhood.

Proposition 1.24. A Hausdor{f topological space X is locally compact if, and only if, every point of X
has a local base of closed compact neighborhoods.

Proof. See [Mun00, Theorem 29.2, p. 185]. [

Proposition 1.25. Let X be a topological space. Then X is locally compact and Hausdor(f if, and only if,
there exists a compact Hausdorff superspace X' D X such that the difference X' ~ X is a single point. If X'
and X" are two such superspaces of X, there exists a homeomorphism from X' to X" that is the identity
on X.

If X is compact, then such space X' is the disjoint union of X with the point space 1. Otherwise, the
point of X' ~ X is a limit point of X in X'.

Proof. See [Mun00, Theorem 29.1, p. 183]. [

Definition 1.22. Let X be a locally compact Hausdorff space that is not compact. The one-point
compactification of X is the unique (up to homeomorphism) compact Hausdorff space superspace
&(X) 2 X such that the difference ¥X) \ X is a single point. The point at infinity of X is the unique
point ooy € EX)\ X.

The one-point compactification of the d-dimensional real space R is the d-dimensional real
sphere S, that is,
ARY) = s

Convergence/divergence at infinity

Definition 1.23. Let X be a non-compact, locally compact Hausdorff space. A sequence that diverges
to infinity in X is a sequence (x,),cn in X which satisfies that, for every compact set K C X, there
exists a natural number ng € N such that, for every natural number n € N, if n > ng, then x,, ¢ K.

Proposition 1.26. Let X be a non-compact, locally compact Hausdorff space, €(X) its one-point compact-
ification, and (x,),en a Sequence in X. Then (x,,),en diveges to infinity in X if, and only if, it converges
to cox in TX).

This shows that we can use the notation lim,,_, ., x,, = cox without ambiguity for a sequence that
diverges to infinity in X.

Definition 1.24. Let X be a non-compact, locally compact Hausdorff space and z € C. A complex-
valued function on X that equals z at infinity is a function f : X — C that satisfies the following: for
every € € R, there exists a compact set K, C X such that, for all x € X, if x & K., then |f(x) —z| < e.

A complex-valued function on X that vanishes at infinity is a function f: X — C that equals 0
at infinity. The space of all continuous complex-valued functions that vanish at infinity is denoted
Bo(X,C).



Proposition 1.27. Let X be a locally compact Hausdorff space, f : X — C a complex-valued function on
Xand z € C. Then f equals z at infinity if, and only if, it can be extended to a function ¥f) : &X) - C
on the one-point compactification of X that is continuous at the point at infinity cox and (f)(cox) = z.

These concepts allow connecting locally compact Hausdorff spaces with commutative complete
normed involutive algebras over the complex numbers (commutative C*-algebras). The space 6, (X, C)
of complex-value functions that vanish at infinity is a commutative C*-algebra (a sub-algebra of the
bounded and continuous complex-value functions), and it is unital if, and only if, X is compact,
in which case it equal the space of continuous functions. Chech [MSE10; Wik25a] for further
information.

1.2 Metric spaces

We denote a metric space by M = (M, |-, -|), being M the set of points of the space and |-,-|:
M X M — R, the distance function of the space, denoted on points p, p’ € M by |p, p’|. We denote
the diameter of a set S C M by O(S) := sup,, <s!P> P'| and the open ball and closed ball of center
¢ € M and radius r € R by B(c; r) and BJc; r], respectively. (Notice that B(c; r) is always open and
B[c; r] is always closed and B(c; r) C B[c; r], but there exist metric spaces in which the closure of an
open ball B(c; r) is strictly contained in the closed ball B[c; r].)

Proposition 1.28. Every metric space is Hausdorff.

Definition 1.25. LetM = (M, |-, -|)and M’ = (M, | -, - |') be metric spaces. A Lipschitz (or controlled)
transformation from M to M is a transformation f : M — M’ for which there exists anumber § € Ry,
such that, for every p,q € M,

lf(p). f(@" < 81p.ql.

The distortion (or dilation) of f is the least such number &, denoted ().

Definition 1.26. Let M and M’ be metric spaces. A contraction from M to M’ is a Lipschitz transfor-
mation f: M — M’ such that (f) < 1.

Theorem 1.29 (Banach fixed point). Let M be a non-empty complete metric spaceand f: M - M a
contraction. There exists a unique fixed point p € M and, for every point p' € M,

lim f*(p’) = p.
n—oo

Definition 1.27. LetM = (M, |-,-|)and M’ = (M, | -, -|") be metric spaces and « € R, . An at-order
Holder (or at-order controlled) transformation from M to M’ is a transformation f : M — M’ for which
there exists a number § € Ry such that, for every p,q € M,

lf(p). f(@I" < 8|p.ql*.

The a-order distortion (or a-order dilation) of f is the least such number &, denoted ( f ).

1.2.1 Completeness

Definition 1.28. Let M = (M, |-, -|) be a metric space. A Cauchy sequence on M is a sequence
(Pnnen On M that satisfies the following: for every ¢ € R, there exists n, € N such that, for every
n,n’' € N,if n > n, and n’ > n, then |p,, p/| < €. A complete metric space is a metric space in which
every Cauchy sequence has a limit.

10



Definition 1.29. A metrizable topological space is a topological space M = (M, J°) for which there

exists a metric | -, - | that generates the topology J” of M. A completely metrizable topological space is a
topological space M = (M, J°) for which there exists a metric | -, - | that generates the topology J and
(M, ]-,-]) is a complete metric space.

Proposition 1.30. Every closed subspace of a complete metric space is complete.

Proposition 1.31. A metrizable space M is N -generated (second-countable) if, and only if, it is N-dense.

Proof. If M is Ny-generated, then it is Xy-dense (PROPOSITION 1.5). For the converse, let |-, - | be
a metric compatible with M. If M is N,-dense, let D be a countable dense set and consider the set
B:={B(c;r) | p € D, r € Q,¢}. The set B is a countable basis for M. |

Proposition 1.32 (Cantor). Let M be a complete metric spaceand M 2 F, 2 F, 2 ... a decreasing
sequence of non-empty closed sets with diameter lim,,_, ., ©(F,) = 0. Then there exists a point p,, € M

such that
m E, = {poo}

neN
and, for every sequence (py,)nen in M such that p,, € E,,

lim p, = po-
n—oo

Proof. For every n € N, the set F, is non-empty, so there exists a point p,, € F,. The sequence (p,,)nen
is Cauchy. To see this, take ¢ > 0. Since lim,,_, ., ©(F,) = 0, there exists n, € N such that ©(F, ) < e.
Now, for every n,n" € N such that n > n; and n' > n,, we have F, UE, C F,_, so

|Pns> Pwr| < G(Fns) <e.

Since M is complete, there exists a limit point p, := lim,,_,, p,. For every n,n’ € N such that
n’ > n,we have p,, € E, C F,; since F, is closed, this implies that p,, € F,, which in turn implies
that po, € [,y Fn- This shows that (], _ F, # 0. Finally, from the fact that

o([] B < inf ©(F,) = 0

neN

it follows that ﬂneN E, ={pol} [

1.2.2 Compactness

Definition 1.30. A totally bounded metric space is a metric space M such that, for every radius
r € R, there exists a finite open r-cover of M.

Proposition 1.33 (Uniform compactness/Heine-Borel). A metric space M is compact if, and only if, it
is complete and totally bounded.

Proof. Check [Mun00, Theorem 45.1, p. 276]. [

This proposition is true for every uniform space.

Definition 1.31. A sequentially compact metric space is a metric space M for which every sequence
(Pwnen In M has a convergent subsequence whose limit is in M.

Proposition 1.34 (Countable uniform compactness). A metric space M is compact if, and only if, it is
sequentially compact.

Proof. Check [Mun00, Theorem 28.2, p. 179]. [

This proposition is true for every first-countable uniform space.
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Compact set distance Remember that in a metric space M we denote the set of compact subsets
of M by J,, and the non-empty comapact sets by T, = T, ~ {0}, the closed ball of center c € M and
radius r € Ry by B[c; r], also called the closed r-neighborhood of ¢, and the closed r-neighborhood
of aset C C M by
B[C;r] = | Ble;r].
ceC

Definition 1.32. Let M be a metric space and K, K’ C M non-empty compact sets. The (Hausdorff)
compact set distance between K and K’ is

IK,K'|, :==inf{r € Ry | K C B[K';r], K’ C B[K;r]}.
The (Hausdorff) compact set distance on the set J,~, of non-empty compact sets is the function

|'7'|¢: ‘TQD@X'TODUJ I RZO
(K,K") — |K,K'|,.

The value |C, C’|, can actually be defined for any non-empty subset of the metric space, but it can
infinite, and the function | -, - |, can fail to be a distance.

Exercise 1.1. Show that
K, K|, = max{sup|p,K’|, sup |p’,K[}.
peK p'eK’
The function | -, - |, is in fact a distance over the non-empty closed and bounded subsets of the
space, but here we restrict it to the non-empty compact sets because that will be our main use for it.

Proposition 1.35. Let M be a metric space. The compact set distance | -, - |, is a distance on T ~g.

Proof. Notice that, for every K,K’ € 7,5, since K and K’ are compact,m they are bounded, so there
exists a point p € M and radiusr € R, such that KUK’ C B(p; r), which implis that |K, K'| < 2r < 0.
Now we need to prove separation, symmetry and the triangle inequality.

1. (Separation) Let K,K' € T,5¢. If K = K’, then B[K;0] = K = K’ and B[K’;0] = K' = K, so
|K,K'|, = 0. Conversely, if |[K,K'|, = 0, then, for everyr € R, ,, K C B[K';r] and K’ C B[K;r].
This implies that every point of K is a point of accumulation of K’ and vice-versa. Since K and
K' are compact in the metric space M, they are closed, so K C K’ and K’ C K, therefore K = K'.

2. (Symmetry) Let K, K’ € J,o¢. Then |K,K'|, = |K', K|, follows directly from the definition of
the compact set distance.

3. (Triangle inequality) Let us denote

R:={r € Ry | K C B[K";r], K" C B[K;r]},
R ={r e Ry | K C B[K';r], K' C B[K;r]},
R":={r e R5o |K' C B[K";r], K" C B[K';r]},

so that |K,K"|, = infR, |[K,K'|, = infR" and |[K’,K"|, = infR".

Taker' € R’ andr” € R". From the definition of R’, we have K C B[K’;r']and K’ C B[K;r'];
from the definition of R”, we have K’ C B[K";r"] and K" C B[K';r"].

Take q € B[K';r']. Then there exists ¢’ € K’ such that q € B[q’;¥'], so |q’,q| < ¥'. Since
K’ C B[K";r"], there exists ¢" € K" such that " € B[q";r"], so |q",q'| < r". Then it follows
from the triangle inequality for | -, - | that

" al <1q". | +1q' s ql =" + 1" =1 +71",
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so q € B[q";¥' +r"], hence B[K'; '] C B[K";r’ + r"]. Therefore we obtain
K CB[K';r'] CB[K";¥ +71"].

In the same way, we also have K” C B[K';r' + r”]. This shows that ¥ +r” € R,soR' + R" C R,
and we conclude that

IK,K"|, = infR < inf(R’ + R") = infR’ + infR” = [K,K’|, + [K',K"].. ]

Proposition 1.36. Let M be a metric space.

1. If M is complete, then the metric space (To~g, | +» - |) is complete.
2. If M is totally bounded, then the metric space (T,~g, | -, - |o) is totally bounded.
3. If M is compact, then the metric space (T ,~g, | -, - |o) is compact.

1.2.3 Iterated function systems

Remember that, for every k € N, we denote [k]] = {n € N|n < k} = {0,...,k — 1}. For each
n € N, the elements of [k]" are finite sequences denoted w = (wy, ..., w,_;), and the elements of
w € [[k]N are inifite sequences denoted w = (wg, wy, ...), whose restriction to the first n terms is
denoted w|,, = (Wg, ... , Wy_1).

Definition 1.33. Let M be a metric space. An iterated function system (IFS) on M is a sequence
f = o) f—1) (With k > 2) of transformations ¢; : M — M. For every sequence w € [k]", we
denote

fw = fwo 00 fwn_l'

The direct image of f is the function

f:2M — oM
k-1

X — U fi(X0.
i=0
A contracting iterated function system is an iterated function system ¢ = (cy, ... , ¢x_;) for which
every ¢; is a contraction.

Definition 1.34. An attractor of f is a non-empty compact set A C M such that

k-1
A= f) =] f.
i=0
The following proposition is based on [Fall4, Theorem 9.1, p. 135].

Proposition 1.37 (Existence and uniqueness of the attractor). Let M be a non-empty compact metric
space and ¢ = (cy, ... , C—1) @ contracting iterated function system on M. There exists a unique attractor
A C M of c and, for every non-empty compact set K C M that is positive ¢;-invariant for every i € [k],

A= ﬁ c"(K).

n=0

13



Proof. Let us first note that the metric space M is complete, because it is compact (PROPOSITION 1.33),
so the metric space (7,5, | -, - |o) iS also complete (PROPOSITION 1.36), and it is non-empty because
M€ T,

We denote the distortion of ¢; by (c;)). Since ¢; is a contraction for every i € [k], then 0 <
maxg<i<k—14c;) < 1. Since, for every non-empty compact sets K, K’ € 7,54, we have

k-1 k-1
e(K), e(®)l, = gci(m,gcim < max|e(K), (K", < (max(e)) KK,

*

this shows that c: 7,5y = J,o is a contraction.

An attractor of c is a fixed point of c: T,5q = T,~9, because it satisfies c(4) = A by definition.
THEOREM 1.29 implies that there exists a unique fixed point A € J,,, that is, A is the unique attractor
of ¢, and that, for every K € J,4g, lim,,_, o, ¢"(K) = A.

If K € T, is positive ¢;-invariant for every i € [k], then ¢(K) = Ui:ol ¢;(K) C K. This implies
that (¢c"(K)),en is a decreasing sequence, so

[ ¢"®) = lim c*(K) = A. n
n—oo
n=0

Lemma 1.38. Let M be a complete metric space, ¢ = (cy, ... , Cx_1) @ contracting iterated function system
on M and A C M its attractor. If the contractions c; are injetive and there is a non-empty compact set K
that is positive ci-invariant for every i € [[k] and such that the sets c;(A) are pairwise disjoint, then, for
everyn,m € N, w € [k]]" and w' € [k]""™, if w £ w’|,, then

¢,(K) N ey (K) = 0.

Proposition 1.39 (Coding the attractor). Let M be a complete metric space, ¢ = (cg, ... ,Cr—1) @
contracting iterated function system on M and A C M the attractor of c. For every point x € A, there
exists a sequence w € [k]N such that, for every non-empty compact set K C M that is positive ¢;-invariant
foreveryi € [k],

ot =) e, &

n=0

A= U ﬂcw|n(K).

we[k]N n=0

Besides that,

Proof. Notice that
® = J e

we[ k]

Since A = ﬂ:’: , €"(K) by PROPOSITION 1.37, then

A= U a®.

n=0 welk]n

Let x € A. Then, for every n € N, there exists w(™ e [k]" such that x € c,,m(K).

14



Notice that
01, (K) = O o+ €y () < () (e, )OO < (max ) 0K,

$0 0 < maxoc;<k{c;) < 1 implies that lim,_,,, ©(c,,,,(K)) = 0. Since K is positive ¢;-invariant for
every i € [k], then, for every n € N, we have c,,,,(K) C ¢, (K). Since the contractions c; are
continuous and K is compact, then ¢;(K) is compact, hence closed. So PROPOSITION 1.32 implies that

ﬂ:’zo ¢y, (K) consists of a single point, which we denote p,,..

Proposition 1.40. Let M be a complete metric space, ¢ = (cy, ... , C—1) @ contracting iterated function
system on M and A C M the attractor of c. If every c; is injective and the sets c;(A) are pairwise disjoint,
then the attractor A is totally disconnected.

The Cantor set Let I := [0,1] denote the unit interval in the real line R and, for each k € N,
[kl ={n e N|n < k} ={0, ...,k — 1}. For each w € [k]), define the transformation

Cp: I —1
2w+ x
2k—1"

The transformations ¢, and c¢; are contractions with factor ﬁ, and they are injective.
We define, for each finite sequence (of length n € N) w = (wy, ..., w,_;) € [k]", the contraction

Ciy i=Cyy © "+ O Cyy -

The empty sequence just gives the identity ¢; = I and the unit interval cy(I) = I, and the first iterates
gives

2w 2w+1
I)= .
(@ [Zk—l’ 2k—1

Since ¢y and c; are contractions with factor ﬁ, we have O(c,,(I)) =

n
e In general, forw € [k]",

we have
n

n-1 -1
2w; 2w; 1
b= [_:': (2k — 1)i+1° :'Z @k— D T @k 1y ]

Lemmal.41. Letn,m € N, w € [k]|" and w' € [k]"*"™. If w £+ w'|, then

cp(Dne, (D) =0.

Proof. We first prove the case m = 0 by induction on n. The initial case n = 0 is vacuosly true. For
the sucessor case, suppose this is true for every natural numbers from 0 to n and take w, w’ € [k]"*!
such that w # w'. We consider 2 cases. (1) If wy F wy, then ¢, (I) N cwé(]l) = 0. Since c,(I) =
Cung (Cwy,..wyy D) € €, (D and ¢, (I) = ng(c(w;,...,w;,)(ﬂ)) c cw(f)(]I), it follows that ¢, (I) N ¢, (I) = 0.
(2) If wy = wy, then we must have (wy, ... ,w,,) £ (wy, ..., wy,), so, by the induction hypothesis, we
obtain ¢y, wy) (D N oy . wp@ = 0. Since ¢, = ¢, is injetive, then

CW(H)OCW/(]I) = CWO(C(w1 ..... wn)(H))ncw(’)(c(wi ..... wh)(]I)) = Cwo(c(wl ..... wn)(ﬂ)nc(wi,...,wil)(]l)) = cwo((ﬂ)) =0.

This completes the induction on n for m = 0. We now prove the result by induction on m. The initial
case m = 0 has just been proved. For the successor case, suppose that it is true for every natural
number from 0 to m and take w € [k]" and w’ € [k]"**™*+!. Notice that c,,(I) C Cwlyty_) (D
so if w £+ (wy, ..., w;,_;), then from the case m = 0 it follows that c,(I) N C(wg,...,w;,_l)(ﬂ) =0, so
c,(DnNe, (D) =0. [ |
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We also define, for each sequence w € [[k]N, the set

neN neN

We have a decreasing sequence of closed sets

I2 ¢, M2...20¢,,M2..

with diameter ©(c(y,,...,w,_,)D) = m — 0, S0 PROPOSITION 1.32 guarantees that there exists a

unique point p,, € I such that c,(I) = {p,.}-
Lemma 1.42. Letw,w’ € [k]N. If w + w/, then c,,(I) N ¢,,,(I) = 0.

Proof. There exists n € N such that wy, F W, S0 €y, ) (D N €y, @) = 0 (LEMMA 1.41); since
cw(D) € C,... (M and ¢, (I) © C(w) wiy (D, it follows that ¢,,(T) N ¢, (I) = 0. |

Finally, for each n € N we define the set

cm = | c,D.

wel[k]n

.....

The set C(™ is a disjoint union of the sets c,,(I), since these sets are pairwise disjoint.

Definition 1.35. The Cantor set is the set

Kk = ﬂ C(l’l)

neN
I
(D)
co() (D
- . c(m
coo(D) co1(D) c10(I) @
I I I e c_ (1)
000 001 010 011 100 101 110 111 4
- . - . - . mm (D)
EE EN EE EE EE EE am muchD
nn nn nn o un nnonn un nncy
([N (TN (IR TRTET i moneS(I)

Figure 1. The first seven pre-fractals of the Cantor set K,.

Proposition 1.43. The transformation

h: Hk]]N — Ky
2Wi
w + (Zk — 1)i+1

is a homeomorphism between [k]N (with the product topology) and K (with the subspace topology
inherited from I).
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Proof. We need to show that & is well-defined in the sense that its image is contained in Ky, that h is
injective and surjective, and that h is continuous and its inverse is continuous.

n-1 2w;

1. (h([kIN) € Ky) For every n € N and w € [[k]", define the point p,, := +l.=0 L

will prove by induction on n that p,, € ¢, (I). For the initial case, py = 0 € I = ¢y(I). For the
successor case, assume it is true for every natural number from 0 to n, and take w € [k]"**!.
By the induction hypothesis, p(y,,....w,) € Caw,,...,w,)(D- Calculating c,, at this point, we obtain

n—1
2w;
Cuo(Pawy,...;wm)) = Cug <+ (2k — {)i+1>
i=0

2wy + 1 il_l 2w;
T (k-1 (2k-1) 2o Ck—1)i

n
_ 2W0 2Wi
“k-n lt 2k — 1)i+1

n

-+ Gt -
im0 (2k_1)1+1

SO Py € Cyy(Cauy,...,w) (D) = (D). This completes the induction proof.
Now take w € [[k]]N. For every n € N, we have pg,, . w. 1) € Cau,...wn_p)(D) S0 it follows
from PROPOSITION 1.32 that limy,_, o P(w,,....w,_;) € Cw(I), hence we conclude that

co n-1

2Wi . 2Wi .

h(w) = ;I; Gk =1y = m ;I: =1y = MM Pl = P € K

2. (his injective) Take w,w’ € [k]~ such that w + w’. We have just showed that h(w) = p,, €
c,(D) and h(w") = p,,» € ¢, (D). Since c,,(I) N ¢,/ (I) = 0, it follows that h(w) + h(w').

3. (his surjective) Take p € K. We will find a sequence w € [k]N such that h(w) = p. By the
definition of Ky, for every n € N, p € C(™ and, since C(") is a disjoint union of the sets c,,(I)
with w € [k]", there exists a unique w € [k]" such that p € c,,my(I), so

pe ) cun®.

neN

This implies that, for every n € N, ¢, ;) (I) N ¢, (n+1)(I) F 0, so it follows from LEMMA 1.41
that the first n entries of w1V coincide with w™. Then there exists a sequence w € [k]¥
such that, for everyn € N, w = (wg, ... , Wy,_1), therefore

pe ) cwn® = [ cunmin @ = (@D = {py}

neN neN

and we conclude that p = p,, = h(w).

4. (his continuos) It is sufficient to show that, given a subbasis of Ky, the inverse image of each
subbasic set by h is open in [k]N. Notice that, for every n € N, since the sets c,,(I) with
w € [k]" are pairwise disjoint, we can find pairwise disjoint open neighborhoods A,, C I of
c,»(I), and also pairwise disjoint open neighborhoods E,, C I of ¢, (I) (this is so because I is a
normal space). Since c,,(I) N 4,, = ¢,(I) = ¢, (I) N E,, this shows that c,,(I) is both an open and
a closed set in the subspace topology of K. This shows that | Jn € N{c,(I) | w € [k]"}isa
subbasis of K. A subbasis of [k]V is given by the cylinders Cy_._,_1[wp, ..., Wu_1].
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We will show that, for every w € [k]",

n-1

h=Y (e, (D) = Co,....n1lWo, oo, Wpq] = ﬂ{W' € [kI™ [ w; = w;}.

. _ n-1 2w; n-1 2w; 1
Since CW(]I) - [+i=0 (2k—=1)i+1’ +i=0 (2k—1)i+1 2k-1)n

h(w") € ¢, () if, and only if,

], we have that, for every w’ € [k]N,

n—1 00 n-1
2w, 2w 2w; 1

+ ——1—< + < |

mo Gk—1irt = 1@k -1+ = 12k — 1)i+ T k-

which is equivalent to

2(wl ' 2w — w)) 1
1 .
M) | k-1t 1)l+1 = | (2k 1)l+1 = | k-1 T Zk=1)n
If w € Cy,. . n-1lwo,...,w,_1], then for every i € {0,...,n — 1} we have w; = w;, so
n—1 Z(Wi—W{) _ .
+. D 0. Since

T 2w; 2 1
< -|— — < -|— — = ,
0= 4 @k-nt = T @k—1)i+ T 2k — 1)

it follows from FORMULA (1) that h(w') € c,,(I), sow’ € h~1(c,,(I)).
If w € h7Y(c,(I)), then h(w') € c,(I), so FORMULA (1) holds. If (wp,...,w}_;) F

(wo, ..., wy,_1), there is some k € {0,...,n — 1} such that w; # wy, and we have a contra-
diction. Since we have shown the inverse image of every subbasic set is a cylinder in [k]N, we
conclude that A is continuous.

5. (h~! is continuous) The space [k]N is compact, because it is a product of compact spaces
(PROPOSITION 1.23), and K, is Hausdorff, because I is Hausdorff (PROPOSITION 1.3), so it
follows from PROPOSITION 1.20 that h~! is also continuous.

The construction of the Cantor set K by this iterated function system can be used to show that
its Hausdorff dimension is log(k)/log(2k — 1) and its measure is stricty positive and finite [Fal14,
Theorem 9.3, p. 140]. The limit when k — 1 does not give the correct dimension of K; = I, though.
Besides that, we can modify the construction of K, by taking any real number r € ]0, 1/2] and defining,
for each w € [[2]), the contraction

cp:I—1

x — r((r~ ! = Dw + x),

which has contraction constant r. This iterated function system will generate a Cantor set of Hausdorff
dimension — log(2)/ log(r), which attains every value in ]0, 1] as r varies in ]0, 1/2].

1.2.4 Examples of distances relevant for dynamics

Distance in countable product of metric spaces For the next definition, we adopt the notation
® =0 for any a € ]0,1[. Also, remember that inf0 = oo
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Definition 1.36. Let (M;)icy = (Mj, |-, |i)ieny be @ countable collection of metric spaces with
diameter equal to 1, M := X,  M;and a € 10, 1[. The ultrametric (with weight ) in M is the
function

|','|A: MXM—)RZO
(. P") — |p. 'l = afiENlIppli+0],
Proposition 1.44. Let (M)iey = (M}, |-, |i)ien be a countable collection of metric spaces (with

diameter equal to 1), M := X, _ M; and a € 10,1[. The ultrametric (with weight @) |-, - |, in M is an
ultrametric in Mthat generates the product topology on M.

Proof. We start by proving that | -, - |, is well-defined in the sense that the codomain of |-, - |, is Rx.
Let p,p’ € M. Since 0 < a < 1 and oo > inf{i € N | |p;, p;|; & 0} > 0, it follows that

0=a> < o nf{i€N]|p;,p; %0} <ad=1,

s00 < |p,p'|n £ 1.
‘We now show that it is an ultrametric:

1. (Separation) Let p, p’ € M. Notice that |p, p'|, = a™U€NIIPepili#0} = 0 if and only if, inf{i € N|
|pi> Pil; # 0} = oo, which holds if, and only if, {i € N | |p;, p;|; & 0} = 0. Since, for everyi € N,
the distance | -, - |; satisfies separation, then |p;, p;| = 0 holds if, and only if, p; = p;, which
implies that {i € N| |p;, pi|; # 0} = 0 is equivalent to p = p’.

2. (Symmetry) Let p, p" € M. For every i € N, the distance | -, - |; is symmetric, so it follows that

{i e N||pi pili ¥ 0} ={i € N||p], pil; # 0},

which implies that |p, p’|, = |P’, DIA-
3. (Ultrametric inequality) For every p, p’ € M, denote

(p,p') =inf{i € N ||p;, p;|; ¥ 0}

Let p, p’, p” € M. We first show a relation between the values «(p, p”), «(p, p') and «(p’, p").
For every i € N such that i < min{«(p, p’),«(p’, p”)}, it holds that |p;, p;|; = 0 and |p;, p{|; = 0,
so it follows from the triangular inequality for | -, - |; that |p;, pi'| < |p;, pil; + |p;> pi |; = 0. This
shows that

{i e N||pypili + 0} C{i € N||ps pils £ 0}u{i € N||pj, pi'l; + O},

which implies that
«p, p") 2 min{«(p, p"), «(p’, p")}.

Since a € ]0, 1], from this relation we conclude that

|p, p"|a = PP
gin{u(p.p").u(p’,p")}

IA

max{al(p’p,) , al(P”PN)}

max{|p, p'[, D", P"|A}-

Finally, we show that it generates the product topology. |
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Two important examples fit in the framework of PROPOSITION 1.44. When we take an integer
n € Z,yand M; = {0, ... ,n — 1}, we have the product space £, = {0, ..., n — 1}220, the usual unilateral
symbolic space in n symbols, the standard model space in symbolic dynamics. Taking o = 271 gives a
commonly used distance on %,,. The other is a relation to p-adic numbers which we will not expose
here.

Definition 1.37. Let (M;)icy = (M}, |-, |i)ieny be @ countable collection of metric spaces with

diameter equal to 1, M = X, _ - M; and a € 10, 1[. The distance (with weight a)

Distance in commutative groups and quotients

Definition 1.38. Let G = (G, +, —,0) be a commutative group. A translation invariant distance on G
is a distance | -, - | on G such that, for every g,g’, h € G,
lg+h,g +h|=1g.9]

Definition 1.39. Let G = (G, +, —,0) be a commutative group, |-, |: G X G = R a translation
invariant metric on G, and H < G a closed (normal) subgroup. The quotient distance on the quotient
group G/H is the function

(g+H,g+H)— |g+H,9 + Hl|g/g = h}lan|g +h,g +H|.
Jh'e
Proposition 1.45. Let G = (G, +, —, 0) be a commutative group, |-, - | a (left) translation invariant

metric on G, and H < G a closed (normal) subgroup. The (right) quotient distance | -, - | g/ is a (right)
translation invariant distance on G/H.

Proof. Wefirst provethat|-, - |/ is well-defined on the equivalence classes of G/H. Letg+H,g'+H €
G/H. Takeelementsg+ k € g+ Hand g’ + k' € g’ + H, with k, k' € H. For any h,h’ € H, we have
k+h,kK+h €H,so

inf h,g +h|= inf k+hg +k +h|
h,%rflengJ“ g9 +n| h’;lr,leng+ +h,g9 +k' +h|

We now prove each property of a distance.

1. (Separation) Letg + H,g' + H € G/H. If |g+ H, g’ + H|g/g = 0, then there exists a sequence
(M, M) pen in H? such that lim,,_, o |g + h,, g’ + k)| = 0. This implies that lim,,_, (g + h,,) =
lim,_ (g + hy,),so g — g = lim,,_, . (h, — h;,). Since H is closed, it follows that (g’ — g) € H,
sog+H =g +H. If g+ H = g’ + H, then it follows from the (left) translation invariance of
|-,-]|that

+H, g +H =|g+H,g+H = inf |g+h,g+h'|= inf |h,h|=0.
lg g lo/ =19 9+ Hlg/m h,h’eng g+n| h,h,eHl I

2. (Symmetry) Follows trivially from the symmetry of |-, - |.
3. (Triangle inequality) Follows trivially from the triangle inequality of | -, - |.

Finally, we prove that |-, - |g/g is (right) translation invariant. Let g+ H,g' + H,k + H € G/H.
Then(g+H)+ (k+H)=9g+k+H,(¢ +H)+(k+H)=g¢g +k+ Hand

k+H,g +k+H|gpg= inf k+h,g +k+h|= inf hg +W|=|g+H,¢ +H|gm
lg+k+H,g9'+k+H|g/n h,;lr,leng+ +h,g +k+h| h,;lr,leng+ g’ +h'|=19+H,9' +Hlg/u

sol(g+H)+ (k+H),(g+H)+ (k+ H)|g/g =|9+H, g +H|g/m- [ |
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1.3 Measure spaces

We denote a measure space by X = (X, M, m), being X the set of points of the space, M its o-algebra
andm: M — ﬁzo its measure. We use in R¢ the standard Lebesgue c-algebra Myq and measure v¥.

Proposition 1.46 (Drawer principle for measure spaces). Let X a measure space and (M;);cn @
countable sequence of measurable subsets of X. If | J._ M; has positive measure, then some M; has
positive measure.

iEN

Theorem 1.47 (Lebesgue differentiation theorem). Let M C RY be a measurable set and f € F'(M, R)
an integrable function. For almost every x € M,

fx) = fve.

1
i et |
r~0 VA(B(X: 1) Jyxry

Proposition 1.48. Let M C R? be a measurable set. Then M has positive measure if, and only if, for
any € > 0, there exists a ball B C R such that m(M N B) > (1 — €) m(B).

Equivalently, M = 0 (is a null set) if, and only if, there exists an € > 0 such that, for every ball B C R,
m(M N B) < (1 — &) m(B).

Proof. This is a consequence of the Lebesgue differentiation theorem (THEOREM 1.47). [

1.3.1 Almost equality
Denote M = M’ for m((M ~ M") u (M’ ~ M))).

1.4 Dynamics

Let X be a set and T = (T, +,0) a monoid. (We denote the set of transformations from X to X by
&(X,X).) A monoid action is a transformation f: T — &(X,X) which satisfies

1. fO=1;
2. Foreveryt,t' € T, f'' o ft = fi+i',

A group action is a monoid action by a group T = (T, +,—,0). In particular, for every t € T, the
transformation f*: X — X of a group action is invertible, since

flof™=f0=I1=f=f"of"
When T is a totally orderd by <, the forward cone of T is the set
Too:={teT|t >0},
and the backward cone of T is the set
Teo:={teT|t <0}

Definition 1.40. Let Xbe asetand T = (T, +,0, <) be a totally ordered commutative monoid. A
T-time dynamics on X is a monoid action of T on X:

[ T— 86X, X)
t— fli: X— X

x— f(x),
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The set X is called the space, the monoid T the time, and the action f the dynamics of the system
X, T, f).

Let T = (T, +,—,0, <) be a totally ordered commutative group. A T-time invertible dynamics on X
isa group action f: T — &(X,X) on X.

A discrete-time (invertible) dynamics is a Z,-time (Z-time) dynamics f; in this case we denote
the dynamics by the time 1 transformation f: X — X and just take compositions for the action. A
continuous-time (invertible) dynamics is an R ,-time (R-time) dynamics f; in this case f is a semiflow
(flow). (Both Z and R are considered with the usual order.)

We mainly consider discrete-time dynamics, but also some continuous-time dynamics occasionally.
Other monoids will not be consider for the time of the system, they have been presented here only to
show how discrete-time and continuous-time dynamics can be given with a single formulation.

1.4.1 Orbits and invariant sets

Definition 1.41. Let X be a set, f a T-time dynamics on X and x € X a point. The forward orbit of x
is the set

12000 = {f'(x) | t € Too}.
If f is invertible, the orbit of x is the set
) ={f'x) |t e T}
Definition 1.42. Let X be a set, f a T-time dynamics on X

1. A forward invariant set is a set S C X such that, for all t € T, f(S) C S;
2. A backward invariant set is a set S C X such that, for all t € Ty, f(S) C S;
3. Aninvariant setis a set S C X such that, for all t € T, f!(S) C S.

1.5 Examples
1.5.1 Symbolic shift

1.5.2 Odometer

Let us consider the space {0, ..., m — 1}V,

2 Baire theorem

2.1 Topologically negligible sets

In the following sections, we will talk about open and closed sets, codense and dense sets, rare and
corare sets, meager and comeager sets, and ideals and filters. These pairs are related by duality through
the operation of set complementation. Whenever we prove something for one of the member of such
pairs, we will omit the proof for the other because it follows directly from the duality principle.
2.1.1 Ideals and filters

Ideals formalize the notion of a negligible element. They are part of the theory of partially ordered
sets.

Definition 2.1. Let P be a set. A partial order on P is a relation on P that satisfies
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1. (Reflexivity) For every p € P, p < p.
2. (Antisymmetry) For every p,p’ € P,if p < p’ and p’ < p,then p = p'.
3. (Transitivity) For every p, p’,p” € P,if p < p’and p’ < p”, then p < p”".

A partially ordered set is a pair (P, <), in which P is a set and < is a partial order on P.

The main partially ordered sets we will consider are the power set 2% of a given set X with the
relation C of set containment, and the subset of open sets J° C 2Xof a topological space (X, J), also
with the containment relation.

Definition 2.2. Let (P, <) be a partially ordered set. An ideal of (P, <)is aset C P such that

1. (Non-triviality) I & 0.
2. (Downward closure) Foreveryi € Iand p € P,if p < i,thenp € L
3. (Upward directed) For every iy, i; € I, there existsa i € I such thatiy <iandi; <i.

A o-ideal of (P, <) is an ideal I C P such that

4. (Upward o-directed) For every sequence (i,,),en in I, there exists a i € I such that, for every
neN,i, <i.

The prototypes of this construction of order theory ideals are the ideals in ring theory, which
generalize the ‘negligible’ behavior that the number 0 has for the integers. As an example, we can
compare the behavior of 0 with the set of even numbers: in the same way that0+0=0and0xn =0
for every integer n, it is also true that the sum of two even numbers is an even number, and that the
product of an even number by any number is also an even number. Ideals in ring theory are related to
the order theory ideals by the divisibility relation. The dual notion of an ideal is a filter.

Definition 2.3. Let (P, <) be a partially ordered set. A filter of (P, <) isa set F C P such that

1. (Non-triviality) F # 0.
2. (Upward closure) For every f € Fand p € P, if f < p, then p € F.
3. (Downward directed) For every f,, fi € F, there exists a f € Fsuch that f < fyand f < f.

A o-filter of (P, <) is a filter F C P such that
4. (Downward o-directed) For every sequence (f,),en in F, there exists a f € I such that, for
everyn €N, f < f,.
2.1.2 Codense and dense sets

The context is a general topological space X = (X, 7). Remember that we denote the topological
interior of a set S C X by S° and its topological closure by S°.

Definition 2.4. Let X be a topological space.

1. A codense set is a set D C X such that D° = 0.
2. A dense setisaset D C Xsuch that D* = X.

The intersection of two open sets may fail to be dense. For instance, the rational numbers and
the irrational numbers are both dense in the real line, but their intersection is empty. Likewise, the
union of two codense sets may not be codense. Nevertheless, if we consider only open dense sets —
or closed codense sets — these properties are in fact true.

Proposition 2.1. Let X be a topological space. The open dense sets form a filter of (T, C), and the closed
codense sets form an ideal of the closed sets with containment order.
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Proof. We will only prove the proposition for open dense sets, since it follows by duality for closed
codense sets.

1. (Non-triviality) The set of open dense sets is not empty since X is an open dense set.

2. (Upward closure) Let D C X be an open dense set and D C S an open set. Then X = D* C S°,
hence X = S°, which shows that S is dense.

3. (Downward directed) Let Dy, D; C X be open dense sets. We will show that their intersection
Dy n Dy is also dense, since it is open by definition of the topology. Let U C X be an non-
empty open set. Since D, is open, then V N Dy is open and, since D, is dense, then V N Dy, is
non-empty. Now, since D, is dense, it follows that (V' N Dy) N D, is non-empty. This shows
that the intersection Dy N D; is dense, because its intersection with any non-empty open set is
non-empty. (In fact, it is sufficient that one of the dense sets be open (D, in our proof) in order
to guarantee that their intersection be dense.) |

This shows that the dense sets form an ideal in the topology J of the space X, but not in its power
set 2X. To obtain that, we must broaden our definitions.

2.1.3 Rare and corare sets

We are going to consider sets whose closure is codense. These sets include closed codense sets, but
also sets which are not closed. Dually, we may also consider sets whose interior is dense. Remember
that we denote the topological interior of a set S C X by S° and its topological closure by S*, and its
set complement by S.

Definition 2.5. Let X be a topological space.

1. A rare (or nowhere dense) set is a set R C X such that (R*)° = 0.
2. A corare set is a set R C X such that (R°)* = X.

Rare sets are also called nowhere dense sets because of the following property, which we leave as
an exercise.

Exercise 2.1. Let X be a topological space. A set R C X is rare if, and only if, for every non-empty set
S C X, the intersection S N R is not dense in S.

Proposition 2.2. Let X be a topological space. The rare sets form an ideal of (2%, C), and the corare sets
form a filter of (2%, ©).

Proof. We will prove the proposition for rare sets.

1. (Non-triviality) The empty set 0 is rare.

2. (Downward closure) Let R C X be a rare set and S C R. Then S* C R*, hence (S*)° C (R*)° = 0,
so it follows that (S*)° = 0, which shows that S is rare.

3. (Upward directed) Let Ry, R; C X be rare sets. From properties of closure, (Ry UR;)* = R UR].
To prove that (Ry UR;)*)° = 0, let U C (R, U R,)* be an open set. We will show that U is
empty. Let V := U N R. By definition, V C R;. This set V is open because U is open and R}
is the complement of a closed set, hence open. For the sake of contradiction, suppose that
U were non-empty. Then V' would also be non-empty, since otherwise U C Ry, which would
contradict the fact that R, is rare (every open set contained in its closure is empty). Hence V'
would be a non-empty open set such that V' C R}, which would contradict the fact that R is
rare. Therefore U must be empty, which shows that R, U R is rare. |
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The fact that the union of two rare sets is also rare can be generalized by induction to any finite
union of rare sets, but this is not true in general for countable unions. For instance, the rational
numbers are a countable union of rare sets (each rational point on the real line), but they are dense,
hence not rare. This means that we cannot guarantee the rare sets form a o-ideal. Again, we must
broaden our definitions to have such property.

2.1.4 Meager and comeager sets

The sets we will consider now are simply countable unions of rare sets. This forces them to be a
o-ideal. Remember that we denote the topological interior of a set S C X by S° and its topological
closure by S°.

Definition 2.6. Let X be a topological space.

1. A meager set is a set M C X for which there exists a countable collection (R,,),en Of rare sets

such that
M= R,

neN
A nonmeager set is a set that is not meager.
2. A comeager (or residual) set is a set M C X for which there exists a countable collection (R,),en
of corare sets such that
M= () Ry

neN

Proposition 2.3. Let X be a topological space. The meager sets form a o-ideal of (2%, C), and the
comeager sets form a o-filter of (2%, C).

Proof. We will prove the proposition for meager sets.

1. (Non-triviality) The empty set 0 is meager.

2. (Downward closure) Let M C X be a meager set and S C M. Since M is meager, there exists a
sequence (R,,),en Of rare sets such that M = UneN R,,. For each n € N, the set S N R,, is rare,
since ((SN R,)*)° C (R},)° = 0. Then from

s=snM=]JsnR,

neN

it follows that S is meager.
3. (Upward o-directed) Let My, My, ... C X be a sequence of meager sets. Then, for each n € N,
there exists a sequence (R, ,)men Of rare sets such that M, = UmeN Ry, m- So it follows that

M= U= U U R

neN neN meN

which shows that M|, is a countable union rare sets, hence meager. [ |

2.1.5 Almost open sets
This is based on [Tao09b].

Definition 2.7. Let X be a topological space. An almost open set is a set A C X for which there exists
an open set U C X such that the symmetric difference A A U is meager.

Question 2.1. Let X be a topological space. Are the almost open sets an ideal/c-ideal? Filter?
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2.2 Baire spaces and the relationship between dense and comeager sets

A Baire space is a space where the notion of being meager implies the notion of being codense, or,
equivalently, where the notion of being comeager (residual) implies the notion of being dense. These
spaces are special since these two different notions of negligibility are not always equivalent.

Definition 2.8. A Baire space is a topological space X in which every meager set is codense.

We could use any of the properties from PROPOSITION 2.4 to define Baire spaces. We choose
PROPERTY 1 because it is the most meaningful in the context we are presenting about the different
types of set negligibility, but the most commonly used one to define Baire spaces is PROPERTY 4.

In the following proposition we show the equivalence of many notions relating meager and
comeager sets to codense and dense sets. Remember that we denote the topological interior of a set
S C X'by S° and its topological closure by S°.

Proposition 2.4. Let X be a topological space. The following properties of X are equivalent to each other.

Every meager set is codense (Baire space).

Every comeager set is dense.

Every countable union of closed codense sets is codense.
Every countable intersection of open dense sets is dense.
Every non-empty open set is nonmeager.

A Wb~

Proof. PROPERTIES 1 and 2 are equivalent because a set is dense if, and only if, its complement is
codense, and it is meager if, and only if, its complement is comeager. PROPERTIES 3 and 4 are also
equivalent using complements.

Let us show that PROPERTIES 1 and 3 are equivalent. Assume PROPERTY 1 is true. Since every
closed codense set is a rare set, a countable union of closed codense sets is meager, therefore is codense
by PROPERTY 1. Now assume PROPERTY 3 is true, and let M C X be a meager set and (R,),en @
countable collection of rare sets such that M = UneN R,,. Since each R,, is rare, we have (R},)° = 0,
so its closure Ry, is codense. Then from PROPERTY 3 it follows that M* = Un K7 is a codense set
because it is a union of closed codense sets. This means that (R},)° = 0, therefore M° C (M*)° = 0,
which shows that the meager set M is codense.

Finally, let us show that PROPERTIES 1 and 5 are equivalent. Assuming PROPERTY 1, if U is open
and meager, then its interior is empty, so it is empty. Conversely, assuming PROPERTY 5, for each
meager set M, its interior M° is also meager, since it is a subset of a meager set (PROPOSITION 2.3).
However, M° is also open, so from PROPERTY 5 it must be empty, that is, M° = 0, which means that
the meager set M is codense. |

The Baire category theorem (THEOREM 2.5) is a classical result that provides two different sufficient
conditions a space may satisfy in order for it to be a Baire space. Neither condition implies the other,
since there are locally compact metric spaces that are not completely metrizable and vice-versa. The
following demonstration is based on Rudin [Rud91, §2.2].

Theorem 2.5 (Baire). Let X be a topological space.

1. If Xis a locally compact Hausdorff space, then it is a Baire space.
2. If Xis a completely metrizable space, then it is a Baire space.

Proof. We present each proof separately, but they are essentially very similar. Let (D,),en be a
countable collection of open dense sets and U C X be a non-empty open set. We will prove that
D := (), oy Dn is dense by showing that DN U # 0.
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1. Suppose X is a locally compact Hausdorff space. This implies that every point of X has a local
basis of compact neighborhoods. Since D, is dense and U is open, there exists p, € D,, N U,
and, since Dy is open, the intersection Dy N U is open, so because every point of X has a local
basis of compact neighborhoods, it follows that there exists a compact set K, C Dy N U. Now
we recursively define, for every n € N, a compact set K,,,; such that

Kn+1 c Dn+1 n Kn-

It then follows from PROPOSITION 1.21 that (] K, is compact, hence (], _ K, * 0. But
notice that, for every n € N, K, C D, N U, because K,, C D, and, by induction, K,, C K,,_; C

-+ CKyCU,so
0% [)K.C()DanU=DNU,
neN neN
hence D N U # 0, which shows that D is dense.
2. Suppose X is completely metrizable and | -, - | is a metric on X that makes X a complete metric

space. Since D, is dense and U is open, there exists p, € Dy N U, and, since Dy is open, the
intersection Dy N U is open, so there exists a real number 0 < r, < 1such that B[py; %] € DyNU.
Now we recursively define sequences (p,,),en and () en as follows. Denote B,, := B(p,; 1)
Given n € N, the intersection D,,,; N B, is non-empty since D,,,, is dense, thus there exists a
point p,,,1 € D,41 N B,. Also, since D,,,; N B, is open, there exists a real number 0 < 7, <
2-(n+1) gych that
Bj1 € Dy N By.

It then follows from PROPOSITION 1.32 that ﬂneN By, & 0. But notice that, for every n € N,

By, C D, n U, because B;, C D,, and, by induction, By, C B,_; C -+ € By C U, so

0+ (]B:c()D.nU=DNU,

neN neN

hence D N U # 0, which shows that D is dense. [ |

Exercise 2.2. Show that the irrational numbers R \ Q are a Baire space.

2.3 G;andF, sets

Gs and F; sets are related to the logical structure used to define them. Gy sets are sets which can be
defined by a countable universal quantifier over ‘open conditions’. Dually, F, sets are defined by a
countable existential quantifier over ‘closed conditions’. For instance, since being a point is a closed
condition (a singleton is closed in the line R), and there are countable rational numbers, Q is an F; set.
The irrational numbers are therefore a G5 : not being a point is an open condition (the complement
of a singleton is open in R) and an irrational point is a point that is not any rational number, so a
countable universal quantifier is used. These examples will become clearer after the definition.

Definition 2.9. Let X be a topological space.
1. A Ggset is a set G C X for which there exists a countable collection (A,,), e Of open sets such

that
G=()A4n

neN
2. An Fset is aset F C X for which there exists a countable collection (F,),cn of closed sets such

that
F=|JE.

neN
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We first state some basic consequences of the definitions.
Proposition 2.6. Let X be a topological space.

1. Anopen setis a Gs set.

. A closed set is an F set.

. The intersection of a countable collection of Gy sets is a G set.
. The union of a finite collection of G; sets is a Gj set.

. The union of a countable collection of F sets is a F set.

The intersection of a finite collection of F sets is a F set.

. The complement of a Gy set is an F set.

N LA WN

Example 2.1. The rational numbers Q are an F set in the real numbers R, because they are countable
and, for each q € Q, the singleton set {q} is closed. More generrally, every countable set in an accessible
topological space is an F set.

Example 2.2. The irrational numbers R \ Q are a G5 set in the real numbers R, because they are the
complement of the rational numbers, which are an F, set. Explicitely, the irrational numbers can be
givenas R\ Q = ﬂqe 0 {q}, each set {q} being not only open but also dense, hence corare. This shows
that the irrational numbers are a comeager (residual) set.

Example 2.3. The rational numbers are not a G5 set. If they were, they would be a contable intersec-
tion of open sets (A,,),en, but then each A, would also be dense in R, because Q is dense in R and
Q C A,,. Since the irrational numbers are a countable intersection of open dense sets (complements
of rational points), it would be possible to express the 0, which is the intersection of Q and R~ Q,
as a countable intersection of open dense sets. This is in contradiction with the fact that the real

numbers is a Baire space (as a consequence of THEOREM 2.5), because in a Baire space every countable
intersection of open dense sets is dense in the space (PROPOSITION 2.4).

For the next proposition, remember that a continuity point of a function f: X — X' between
topological spaces X and X' is a point x € X for which, given an neighborhood V' of f(x) € X’, there
exists a neighborhood V of x such that f(V) C V. When X’ = M is a metric space, this is equivalent
to the following: for every ¢ € R, (, there exists a neighborhood V of x such that f(V) C B(f(x);¢);
that is, for every x’ € V, | f(x), f(x)| < e.

Proposition 2.7. Let X be a topological space, M a metrizable topological spaceand f: X - M a
function. The continuity set C of f (the set of points C C X on which f is continuous) is a Gs set and the
discontinuity set D of f (the set of points D C X on which f is not continuous) is an F, set.

Proof. Let|-,-| be a metric that generates the topology of M. For each n € Z, define the set
1
A, = {x € X| there exists a neigborhood V of x such that, for every x', x" € V, |f(x"), f(x")| < Z}'

We first show that the set A,, is open. Let x € A,, and take a neighborhood V' C X of x such that, for
every x’,x" € V, it holds that |f(x"), f(x")| < % For every y € V, the set V'is also a neighborhood of

y and it has the desired property for y to be an element of A,,. Then V' C A,,, which shows that A,, is
open.
Now define the G5 set G := ﬂnez 0An. We will prove that G = C.
>

+ (C C G)Letx € Cand take n € Z,. Since x is in the continuity set of f, there exists a
neighborhood V' C X of x such that, for every x’ € V, | f(x), f(x)| < zi Then it follows by the
n
triangle inequality that, for every x’, x" € V,

IfF G, FXD < 1F G, FOOL + 1f (), f(x")] < %
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which shows that x € A,, and hence that x € G.
* (G C O)Letx € Gand take € € R (. There exists n € Z, such that l<g and, since x € A,
n
there exists a neighborhood V' C X of x such that, for all x’ € V,

FG0. ) < 5 <.

which shows that x is a continuity point of f, so x € C.

This shows that C is a G5 set and the fact that the discontinuity set is an F; set then follows by set
complementation. |

Figure 2. Thomae’s function is a function that is only continuous at irrational points.

Proposition 2.8. A subspace of a completely metrizable space M is itself completely metrizable if, and
only if, itis a Gs set in M.

2.4 Measurably negligible sets

This is based on [Tao09b].
Denote M = M' for m((M ~ M") U (M’ ~ M))).

Definition 2.10. Let X = (X, M, m) be a measure space.

1. A null set is a measurable set N € M such that N = 0 (equivalently, m(N) = 0).
2. A conull (or full measure) set is a measurable set N € M such that N = X (equivalently,
m(N) = m(X)).

Proposition 2.9. Let X be a measure space. The null sets form a o-ideal of (M, C), and the conull sets
form a o-filter of (M, C).

Proof. We will prove the proposition for null sets.

1. (Non-triviality) The empty set 0 is null.
2. (Downward closure) Let N C X be anull set and S C N a measurable set. Then m(S) < m(N) =
0, which shows that S is null.
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3. (Upward o-directed) Let Ny, Ny, ... € X be a sequence of null sets and N, := UneN N,. Then

N, is measurable and
m(Ny) = m ( U Nn> < 4 m,) =o,

neN neN
which shows that N, is null. |

3 Topological dynamics

3.1 Topological transitivity
The simplest notion of transitivity comes from group actions.

Definition 3.1. Let X be a set and G a group. A transitive group action of G on X is a group action
a: G x X — X for which, given any pair of points x, x" C X, there exists g € G such that a9(x) = x'.

Thus, in the context discrete-time invertible dynamics, we could consider the definition group
actions of Z: A transitive dynamics on X is an invertible dynamics f : X — X for which, given any
pair of points x, x" C X, there exists an integer n € Z such that f"(x) = x’. This is equivalent to the
existence of an orbit of a point of the system that equals the whole space X.

If we restrict this to dynamics that are not necessarily invertible, we must consider semigroup
actions of Z, and we obtain the following definition: A transitive dynamics on X is a dynamics f :
X — X for which, given any pair of points x, x" C X, there exists a positive integer n € Z, such that
f™(x) = x'. This in turn is equivalent to the existence of a forward orbit of a point of the system that
equals X, in fact a periodic orbit, which implies that ths system is in fact invertible.

This definition is, of course, very restrictive for our considerations. When we consider a topological
space instead of a set, we can weaken this notion of transitivity. A point does not necessarily need
to reach another point, only come arbitrarily close to it. This means it needs to visit every open
neighborhood of the other points in the space or, in other words, its forward orbit must be dense.
Because of its direct relation to the concept of transitivity, we call this topological transitivity, but this
is often simply called transitivity in the context of topological dynamics, in which the much stronger
notion of transitivity of (semi)group actions is barely useful.

Definition 3.2. Let X be a topological space. A topologically transitive dynamics on X is a continuous
dynamics f: X — X for which there exists a point x € X whose forward orbit fZ20(x) is dense in X.
Such a point is called a topologically transitive point. The transitive set of f, denoted T(f), is the set of
all topologically transitive points of f.

Under a different perspective, instead of considering a point that visits every neighborhood, we
can consider dynamics in which (non-empty) neighborhoods of the space visit each other. This gives
rise to another definition, which we call regional topological transitivity following Gottschalk and
Hedlund [GH55], but which is often called topological transitivity.

Definition 3.3. Let X be a topological space. A regionally (topologically) transitive dynamics on X is a
continuous dynamics f : X — X for which, given any pair of non-empty open sets U, U’ C X, there
exists a positive integer n € Zy( such that f*(U)n U’ £ 0.

There are other, more general notions of topological transitivity which distinguish forward and
backward orbits, or take into account hitting sets etc. Akin and Carlson present a comprehensive dis-
cussion of these definitions and their relations [AC12]. Gottschalk and Hedlund present a discussion
about topological transitivity for flows and, more generally, for (semi)group actions [GH55].
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The concepts of topological transitivity and regional transitivity presented in DEFINITIONS 3.2
and 3.3 are not equivalent for arbitrary topological spaces. In fact, neither implies the other. Neverthe-
less, under some reasonable assumptions on the topological space, the two notions are equivalent.
The classical result in this regard is Birkhoff’s transitivity theorem.

Theorem 3.1 (Birkhoff). Let M be a perfect, second-countable and complete metric space. Then a
continuous dynamics f : M — M is regionally transitive if, and only if, it is topologically transitive.

In what follows, we will prove two propositions, PROPOSITIONS 3.3 and 3.5, which, along with the
fact that every metric space is accessible and every complete metric space is Baire, imply THEOREM 3.1.
Each of these propositions consider different sufficient conditions the topological space must satisfy
in order for one notion of topological transitivity to imply the other. To prove the first one, we need a
simple lemma.

Lemma 3.2. Let X be an accessible and perfect topological space and f : X — X a continuous dynamics.
If a point x € X is topologically transitive, then, for every positive integer n € Z, the point f"(x) is also
topologically transitive.

Proof. Let x € X be a topologically transitive point and take a positive integer n € Z5, and an non-
empty open set U C X. Consider the set fI"l(x) = {f™(x) | 0 < m < n} and define U’ := U « fI"l(x).
Since U is a non-empty open set, fI"1(x) is a finite set, and X accessible and perfect, the set U’ is a
non-empty open set (LEMMA 1.2).

So the set U’ is a non-empty open set that does not contain any of the f™(x) for 0 < m < n. Since
x is topologically transitive, it follows that there exists n’ > 0 such that f"' (x) € U’. But the definition
of U’ implies that n’ > n and, since U’ C U, if follows that f"(x) is also topologically transitive. W

Proposition 3.3. Let X be an accessible and perfect topological space and f : X — X a continuous
dynamics. If f is topologically transitive, then it is regionally transitive.

Proof. Let x € X be a topologically transitive point and take a pair of non-empty open sets U, U’ C X.
Since x is topologically transitive, there exists a positive integer m > 0 such that f™(x) € U. Because
the space X is perfect, the point f™(x) is also topologically transitive (LEMMA 3.2), so there exists a
positive integer n > 0 such that f*(f™(x)) € U’. It follows that f™*"(x) € f*(U) n U’, therefore
fMU)N U’ £ 0, which shows that f is regionally transitive. [ |

Wrong proof. Where is the mistake?> Let x € X be a topologically transitive point and take a pair of
non-empty open sets U, U’ C X. Since x is topologically transitive, there exists a positive integer
n > 0 such that f*(x) € U’ and, because f is continuous, f~"(U’) is an open set, hence U N f~"(U’)
is also open. Since x is topologically transitive, there exists a positive integer m > 0 such that

fM(x) € Un f~"(U"). It follows that f™*"(x) € f*(U)N U’, therefore f*(U)N U’ % 0, which shows
that f is regionally transitive. |

Before proving PROPOSITION 3.5, we provide a usefull classification of the set of topologically
transitive points in second-countable spaces.

Lemma 3.4. Let X be a second-countable topological space and f : X — X a continuous dynamics. The
set T(f) of topologically transitive points of f is a Gs set. If (Uy,)nen IS a countable basis of non-empty
open sets for the topology of X, then, for every n € N, the union U::o f~™U,) is a non-empty open set

and o o
() = J Fwp.

n=0 m=0

. The mistake is in assuming that U n f~"(U’) is non-empty to be able to use the topological transitivity of the point x, since
this is exactly what we are trying to prove. This “proof” was suggested by a Large Language Model after some even more wrong
attempts at proving this proposition.
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Proof. Let (U,),en be a countable basis of non-empty open sets for the topology of X. For each
n € Zs, the set of points of X that eventually visit U, in positive time under the action of f is the set

[e5]

Vo= £,

m=0

Since U, is open and f is continuous, V}, is also open, and it is non-empty since 0 &+ U,, C V.
Finally, let us consider the set

00 0o
r=1%=)
n=0 n=0

This is the set of points of X that eventually visit each open basic set U, in positive time under the
action of f or, equivalently, the set of all topologically transitive points of the system. This also shows
that the set of topologically transitive points is a Gy set. |

Cs

(U

m=0

For the next proposition, let’s remember that in a Baire space every countable intersection of open
dense sets is a dense set (PROPOSITION 2.4).

Proposition 3.5. Let X be a second-countable and Baire topological space and f : X — X a continuous
dynamics. If f is regionally transitive, then it is topologically transitive.

Proof. Let (U,),en be a countable basis of non-empty open sets for the topology of X. For each
n € Zs, define

D, = L_Jof-mwn).

From LEMMA 3.4, we know that each D, is a non-empty open set and that the transitive set of f is
given by

[so]
() =[] Dn
n=0

We will show that each D,, is dense in X. Let V' C X be a non-empty open set. Since f is regionally
transitive, for the non-empty open sets U, and V there exists a positive integer m > 0 such that
f™(V)N U, £ 0, which is equivalent to V. n f~™(U,) + 0. This implies that V N D,, % 0, which shows
that D,, is dense in X.

Finally, since X is a Baire space and the sets D,, are open and dense, it follows that D is also dense,
which implies that it is not empty (the case in which X = 0 is trivial), so there exists a topologically
transitive point and hence f is topologically transitive. |

3.1.1 Topological transitivity for forward and backward orbits

Proposition 3.6. Let X be a perfect and compact metric space and f : X — X a homeomorphism. If
there exists a point x € X whose orbit f%(x) is dense in X, then f is topologically transitive.

Proof. This uses PROPOSITION 3.5. Check [MSE18]. |

Proposition 3.7. Let X be a perfect and compact metric space and f : X — X a homeomorphism. If f
is topologically transitive, then f~* is topologically transitive.

Proof. This uses PROPOSITION 3.5. Check [MSE18].
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3.2 Recurrence

Definition 3.4. Let X be a topological space and f: X — X a continuous dynamics. A recurrent
point of f isa point x € X such that, for every neighborhood V of x, there exists n € Z, 4 such that
f™(x) € V. The recurrent set of f is the set of all recurrent points of f, denoted R(f).

Other definitions of recurrent point exists and they are all equivalent (see [LS15]). For instance,
this is equivalent to the existence of a sequence (n;);c of natural numbers such that lim;_, o, n; = oo
and lim;¢p f™ = x. The following proof is based on [VO16].

Proposition 3.8 (Birkhoff recurrence theorem). Let X be a compact topological spaceand f : X - X
a continuous dynamics. Then

R(f) + 0.

Proof. Let J C 2X be the set of all closed non-empty forward invariant sets I C X (that is, f(I) C I).
This family is non-empty because X € J. Let us show that a set I € J is minimal with respect to the
contaiment relation C if, and only if, the orbit of every x € I'is dense in I.

» (=) LetI € J be minimal with respect to the contaiment relation C. Since I is forward invariant,
the orbit of every x € I'in included in I, and, since I is closed, the topological closure of such
orbit is contained in I. So, because I is minimal, the closure of this orbit must equal I, otherwise
the closure of the orbit would be a set C C I that is closed, non-empty and forward invariant,
contradicting the minimality of I.

» (<) Let I € 7 be a set such that the orbit of every x € Iis dense in I. Then every closed,
non-empty and forward invariant set C C I must equal I, because closure of the orbit of every
x € Ciscontained in C and equals I. This shows that I is minimal.

This implies that every point in such a minimal set is recurrent, so it is enough to prove there exists a
minimal set.

To this end we show that every decreasing chain (I,,),,ecq in 7 has a minorant. Let I, := ﬂwe ol

Since (I,),ec0 is a decreasing chain of closed non-empty sets and X is compact, their intersection I, is
non-empty (PROPOSITION 1.13). The intersection I is closed because it is an intersection of closed
sets I, and is forward invariant because each I, is forward invariant, so f(I,) = ﬂwe of Iy) C I
Since I C I, for every I, this shows I, is a minorant of (I,),ecq- Finally, it then follows from Zorn’s
lemma that J contains a minimal element, hence f has a recurrent point. |

The next result shows that the recurrent set is a G5 set.

Proposition 3.9. Let X be a metric space and f : X — X a continuous dynamics. The recurrent set
R(f) is a Gs set and

R = Ufrex|p o<}

m21lnz>m

Proof. For every m,n € Z such that n > m > 1, define the sets

1
Ry = {x € X‘ |x, f"(x)| < E}’

Ry = U, Rmnand R := [ __ Rp. The function d: X — Ry, defined by d(x) := [x, f(x)] is
continuous, because fand|-,-| are continuous, and we have

o= (03]
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This shows that R, ,, is open, hence R,, is open, so we conclude that R is a G5 set. But R is precisely
the set of points x € X that, for every neighborhood B(x; i), there exists an integer n > m such that
m

f™(x) € B(x; i), which is the recurrent set. [ |

Proposition 3.10 (Erdds-Stone). Let X be a topological space and f : X — X a continuous dynamics.
For everyn € Zy,,

R(f) = R(f™).
3.3 Non-wandering points

Definition 3.5. Let X be a topological space and f : X — X a continuous dynamics. A non-wandering
point of f isa point x € X such that, for every neighborhood V of x, there exists n € Z 4 such that
f™MV)NV % 0. The non-wandering set of f is the set of all non-wandering points of f, denoted Q(f).

Proposition 3.11. Let X be a topological space and f : X — X a continuous dynamics. Every topologi-
cally transitive point is recurrent, and every recurrent point is a non-wandering point:

T(f) € R(f) € Q(f).

Check [MSE22] for an example of a point that is non-wandering, but is not recurrent.
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