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1 Preliminaries

A transformation (or function) 𝑓 from a set 𝐶 to a set 𝐶′ is denoted 𝑓∶ 𝐶 → 𝐶′ and the composition os

transformations 𝑓∶ 𝐶 → 𝐶′ and 𝑓′∶ 𝐶′ → 𝐶″ is denoted 𝑓′ ∘𝑓∶ 𝐶 → 𝐶″. The identity transformation

in 𝐶 is I = I𝐶∶ 𝐶 → 𝐶.

The empty set is denoted 𝟘, the point set, 𝟙 = {0}, and the double set, 𝟚 = {0, 1}. Given a “universe”

set 𝑋, the power set of 𝑋 (the set of all its subsets) is denoted 2𝑋, and the set complement (in 𝑋) of a

subset 𝑆 ⊆ 𝑋 is denoted 𝑆 = 𝑋 ∖ 𝑆.

The natural numbers are denoted ℕ and include 0 (zero), and, for every natural number 𝑛 ∈ ℕ,

the set of the first 𝑛 natural numbers is denoted ⟦𝑛⟧ ≔ {𝑛′ ∈ ℕ | 𝑛′ < 𝑛} = {0,… , 𝑛 − 1}. The integers

are denoted ℤ, the rational numbers, ℚ, and the real numbers, ℝ. The positive, strictly positive, negative

and strictly negative integers are denoted ℤ≥0, ℤ>0, ℤ≤0 and ℤ<0, respectively. Analogous notation is

used for other ordered number sets. We denote the infimum of a set 𝑆 by inf 𝑆 and its supremum by

sup 𝑆.

1.1 Topological spaces

We denote a topological space by 𝑿 = (𝑋,𝒯), being 𝑋 the set of points of the space and 𝒯 its topology1.

The trivial topology on a set 𝑋 is {𝟘, 𝑋} and the discrete topology on 𝑋 is the power set 2𝑋. We denote

the topological interior of a set 𝑆 ⊆ 𝑋 by 𝑆⚬ and its topological closure by 𝑆⦁. We state some basic

definitions and propositions for later reference. Most of the omitted proofs can be found in the book

Topology, by Munkres [Mun00].

Definition 1.1. Let 𝑿 be a topological space. A neighborhood of a point 𝑥 ∈ 𝑋 is a set 𝑉 ⊆ 𝑋 such

that 𝑥 ∈ 𝑉 ⚬. A neighborhood of a set 𝑆 ⊆ 𝑋 is a set 𝑉 ⊆ 𝑋 such that 𝑆 ⊆ 𝑉 ⚬.

Definition 1.2. Let 𝑿 be a topological space and 𝑥 ∈ 𝑋. A local neighborhood basis at 𝑥 is a collection

ℬ ⊆ 2𝑋 of neighborhoods of 𝑥 such that, for every neighborhood 𝑉 ⊆ 𝑋 of 𝑥, there exists some 𝐵 ∈ ℬ

such that 𝐵 ⊆ 𝑉.

Definition 1.3. Let𝑿 be a topological space. An isolated point is a point𝑥 ∈ 𝑋 that has a neighborhood

without other points of the space (that is, {𝑥} is open).

Definition 1.4. A discrete topological space is a topological space 𝑿 in which every point is isolated.

Its topology is 2𝑋, the discrete topology on 𝑋.

Definition 1.5. A perfect (or accumulated) topological space is a topological space 𝑿 that has no

isolated points.

1.1.1 Separability

We start by defining several notions subsetes of a topological space can be distinguished. The first

notions are not restricted to topological spaces. Let 𝑋 be a set and 𝑆, 𝑆′ ⊆ 𝑋 subsetes. They are distinct

when 𝑆 ≠ 𝑆′, which is a logical notion that for sets is equivalent to the existence of an element of one

set that is not an element of the other, and they are disjoint when 𝑆 ∩ 𝑆′ = 𝟘, which is a set theoretic

notion.

Definition 1.6. Let 𝑿 be a topological space, 𝑥, 𝑥′ ∈ 𝑋 points, and 𝑆, 𝑆′ ⊆ 𝑋 subsets.

1. We generally use boldface to indicate the space/categorial object 𝑿, including its structure (its topology 𝒯, distance | ⋅ , ⋅ |,
binary operation +, …), while the normal weight font denotes the underlying set 𝑋.
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1. The points 𝑥 and 𝑥′ are topologically distinct when one of them has a neighborhood that does

not contain the other.

2. The sets 𝑆 and 𝑆′ are nearly separated when each set has a neighborhood that is not a neighbor-

hood of the other. (equivalently, when each is disjoint from the closure of the other)

3. The sets 𝑆 and 𝑆′ are separated when they have disjoint neighborhoods.

4. The sets 𝑆 and 𝑆′ are separated by close neighborhood when they have disjoint closed neighbor-

hoods.

5. The sets 𝑆 and 𝑆′ are separated by continuous function when there exists a continuous function

𝑓∶ 𝑋 → ℝ such that 𝑆 ⊆ 𝑓−1(0) and 𝑆′ ⊆ 𝑓−1(1).

6. The sets 𝑆 and 𝑆′ are precisely separated by continuous function when there exists a continuous

function 𝑓∶ 𝑋 → ℝ such that 𝑆 = 𝑓−1(0) and 𝑆′ = 𝑓−1(1).

Each condition in definition 1.6 is implied by the following condition. In what follows, we will

use these definition to enunciate and prove many different properties of topological spaces.

Definition 1.7. A punctual (or T0-separated) topological space is a topological space 𝑿 in which

distinct points are topologically distinct.

These are the spaces that can be recovered from abstract “topologies without points”.

T1-separated spaces

Definition 1.8. An accessible (or T1-separated) topological space is a topological space 𝑿 in which

distinct points are nearly separated.

An equivalent definition of an accessible space is a topological space in which, for every point

𝑥 ∈ 𝑋, the singleton set {𝑥} is closed. This is also equivalent to every finite set being closed.

Proposition 1.1. A topological space 𝑿 is accessible if, and only if, every finite set 𝐹 ⊆ 𝑋 is closed.

Lemma 1.2. Let 𝑿 be an accessible and perfect topological space.

1. There are no non-empty finite open sets 𝐹 ⊆ 𝑋.

2. If 𝑈 ⊆ 𝑋 is a non-empty open set and 𝐹 ⊆ 𝑋 is finite, then 𝑈 ∖ 𝐹 is a non-empty open set.

Proof. 1. Let 𝐹 ⊆ 𝑋 be a finite open set. Suppose, for the sake of contradiction, that 𝐹 were

non-empty, and take 𝑥 ∈ 𝐹. Notice that the complement of {𝑥} satisfies

{𝑥} = 𝑋 ∩ {𝑥} = (𝐹 ∪ 𝐹) ∩ {𝑥} = 𝐹 ∪ (𝐹 ∩ {𝑥}).

Since 𝐹 is open, its complement 𝐹 is closed. Since 𝐹 is finite, 𝐹 ∖ {𝑥} = 𝐹 ∩ {𝑥} would be

finite, hence closed because 𝑿 is accessible (proposition 1.1). Then it would follow that {𝑥} is

a union of closed sets, thefore closed, so {𝑥} would be open. This would contradict the fact that

𝑿 is perfect, so we conclude that 𝐹 is empty.

2. Since 𝐹 is finite and 𝑿 is accessible, 𝐹 is closed (lemma 1.2), so𝑈 ∖𝐹 is open. Besides that,𝑈 ∖𝐹

is also non-empty, since otherwise we would have 𝑈 ⊆ 𝐹, so the non-empty open set 𝑈 would

be a finite, which cannot happen in an accessible and perfect space (by the previous item). ◼

T2-separated spaces We now define the most important separation property of a topologicl space.

At first glance it may just seem like one among many in the hierarchy of separation properties, but it

becomes evident throughout the study of topological spaces and many other related areas that it is

essential.
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Definition 1.9. A separated (or T2-separated, or Hausdorff ) topological space is a topological space

𝑿 in which distinct points are separated. We also say that 𝒯 is a separated (Hausdorff ) topology on 𝑋.

Definition 1.10. A topological space 𝑿 is separated (Hausdorff) if, and only if, limits of nets are

unique. (In particular, in separated spaces limits of sequences are unique.)

Proposition 1.3. A subspace of a separated topological space is separated.

Proposition 1.4. Let 𝑋 be a set.

1. The discrete topology 2𝑋 on 𝑋 is separated.

2. If 𝒯 is a separated topology on 𝑋, then every greater (finer/stronger) topology 𝒯′ ⊇ 𝒯 on 𝑋 is

separated.

T3-separated spaces

Definition 1.11. A regular topological space is a topological space 𝑿 in which every disjoint point

set and closed set are separated. A T3-separated space is a regular topological space that is separated

(Hausdorff).

T4-separated spaces

Definition 1.12. A normal topological space is a topological space 𝑿 in which disjoint closed sets are

separated. A T4-separated space is a normal topological space that is separated (Hausdorff).

1.1.2 Bases and countability

Definition 1.13. Let 𝜅 be a cardinal.

1. A 𝜅-generated topological space is a topological space 𝑿 that admits a basis for its topology of

cardinality 𝜅. The case 𝜅 = ℵ0 is also called second-countable.

2. A locally 𝜅-generated topological space is a topological space 𝑿 in which every point admits a

local basis of cardinality 𝜅. The case 𝜅 = ℵ0 is also called first-countable.

Notice that every second-countable space is first countable. To converse is not true; for instance,

an uncountable discrete space is first-countable but it is not second-coutable.

Definition 1.14. Let 𝜅 be a cardinal. A 𝜅-dense topological space is a topological space that admits a

dense set of cardinality 𝜅.

Theℵ0-dense spaces are often called “separable” spaces, but we will avoid this terminology because

“separation” and related words are overused in topology, so to avoid confusion we give preference to

the separation axioms of section 1.1.1.

Proposition 1.5. An ℵ0-generated topological space 𝑿 is ℵ0-dense.

Proof. Let ℬ be a countable basis of non-empty open sets and take, for each 𝐵 ∈ ℬ, a point 𝑝𝐵 ∈ 𝐵.

Then the set 𝐷 ≔ {𝑝𝐵 | 𝑏 ∈ ℬ} is dense in 𝑿. ◼

Proposition 1.6. Let 𝑿 be a Hausdorff topological space and 𝜅 a cardinal. If 𝑿 is 𝜅-dense, then 𝑋 has

cardinality at most 22
𝜅
. If 𝑿 is first-countable (locally ℵ0-generated), then 𝑋 has cardinality at most 2𝜅.

Proof. Check [Wik25b, § Separability versus second countability]. ◼
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1.1.3 Connectedness

Definition 1.15. A connected topological space is a topological space 𝑿 that does not admit a non-

trivial open partition (or, equivalently, if 𝐴,𝐴′ ⊆ 𝑋 are open sets such that 𝐴 ∩ 𝐴′ = 𝟘 and 𝐴 ∪ 𝐴′ = 𝑋,

then {𝐴, 𝐴′} = {𝟘, 𝑋}). A disconnected space is a space that is not connected.

Proposition 1.7. Let𝑿 be a topological space and 𝑺 ⊆ 𝑿 a topological subspace. The space 𝑺 is connected

if, and only if, there is no pair of non-empty open sets 𝐴,𝐴′ ⊆ 𝑋 which are disjoint, 𝐴 ∪ 𝐴′ = 𝑆, and

neither one contains a limit point of the other.

Proposition 1.8. Let 𝑿 and 𝑿 ′ be topological spaces and 𝑓∶ 𝑋 → 𝑋 ′ a continuous function. If 𝑿 is

connected, then 𝑓(𝑋) ⊆ 𝑋 ′ is connected.

Proposition 1.9. Let 𝑿 be a topological space and 𝒞 ⊆ 2𝑋 a collection of connected sets such that, for

every 𝐶, 𝐶′ ∈ 𝒞, 𝐶 ∩ 𝐶′ ≠ 𝟘. Then⋃
𝐶∈𝒞

𝐶 is connected.

Definition 1.16. Let 𝑿 be a topological space and 𝑥 ∈ 𝑋. The connected component of 𝑥 is the union

of every connected set of 𝑿 that contains 𝑥.

Definition 1.17. A totally disconnected space is a topological space 𝑿 for which the connected

component of every point 𝑥 ∈ 𝑋 is {𝑥}.

Proposition 1.10. Every discrete space is totally disconnected.

Proposition 1.11 (Brouwer’s theorem). Every non-empty, perfect, compact, Hausdorff space with a

(countable?) basis of closed-open sets is homeomorphic to 𝟚ω.

Equivalently, every non-empty, perfect, compact, totally disconnected, metrizable topological space is

homeomorphic to 𝟚ω.

1.1.4 Compactness

Closed intervals of the real line ℝ have the following important properties: 1. any decreasing sequence

of non-empty closed subsets of a closed real interval has non-empty intersection, 2. every continuous

real function on a closed real interval has a maximum and minimum, 3. every sequence in a closed

real interval has a convergent subsequence, and 4. closed real intervals are bounded (and closed).

Compact spaces are topological spaces that share some of these properties. Every continuous

real function on a compact space has a maximum and minimum, and any decreasing sequence of

non-empty closed sets on a compact space has non-empty intersection. Also, in compact metric

spaces, every sequence has a convergent subsequence. The definition we adopt for compact spaces is

equivalent to the intersection of closed sets property, but using unions of open sets instead, as will be

clear shortly.

Definition 1.18. Let 𝑿 be a topological sapce. An open cover of 𝑿 is a collection of open sets 𝒞 ⊆ 𝒯

such that 𝑋 = ⋃
𝐶∈𝒞

𝐶. An open subcover of an open cover 𝒞 is a collection 𝒮 ⊆ 𝒞 that is an open

cover of 𝑿.

Definition 1.19. A compact topological space is a topological space 𝑿 in which every open cover 𝒞 of

𝑿 has a finite open subcover ℱ ⊆ 𝒞 of 𝑿. We also say that 𝒯 is a compact topology on 𝑋.

Using the induced subspace topology, we have the following caracterization of compact subspaces.

Proposition 1.12. Let 𝑿 be a topological space and 𝑺 ⊆ 𝑿 a subspace. Then 𝑺 is compact if, and only if,

every open cover of 𝑆 in 𝑋 has a finite subcover in 𝑋.

Proof. See [Mun00, Lemma 26.1, p. 164]. ◼
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As we just mentioned, we can characterize compact spaces with closed sets. This is done by using

using set complements and the logical contrapositive. The dual definition of compactness (by using

set complements) is the following: a compact space is a topological space in whiuch every collection 𝒞

of closed sets that has empty intersection has a finite subcollection ℱ ⊆ 𝒞 that has empty intersection.

In this form, this property is not immediately obvious, but by taking the contrapositive, we obtain a

much more useful result: proposition 1.13. Before presenting it, we define a property in order to

simplify its statement.

Definition 1.20. Let 𝑿 be a topological space. A collection of subsets with the finite intersection

property is a collection 𝒞 ⊆ 2𝑋 such that, for every finite subset ℱ ⊆ 𝐶,

⋂
𝐹∈ℱ

𝐹 ≠ 𝟘.

In particular, a decreasing sequence of closed non-empty subsets 𝐶0 ⊇ 𝐶1 ⊇ … has the finite

intersection property.

Proposition 1.13. Let 𝑿 be a topological space. Then 𝑿 is compact if, and only if, for every collection of

𝒞 of closed subsets with the finite intersection property,

⋂
𝐶∈𝒞

𝐶 ≠ 𝟘.

In particular, in a compact space a decreasing sequence of non-empty closed subsets 𝐶0 ⊇ 𝐶1 ⊇ … has

non-empty intersection.

Proof. This basically follows from the definition of a compact space by taking set complements and

the contrapositive. See [Mun00, Theorem 26.9, p. 169] for the details. ◼

It is easy to show that compactness is preserved by continuous functions, which turns out to be

related to the fact that real functions defined on closed real intervals have a maximum and a minimum.

Proposition 1.14. Let 𝑿 and 𝑿 ′ be topological spaces and 𝑓∶ 𝑋 → 𝑋 ′ a continuous transformation. If

𝑋 is compact, then 𝑓(𝑋) ⊆ 𝑋 ′ is compact.

Compactness and smallness Compact spaces are, in some sense, “small”. Broadly speaking,

compact spaces can be seen as analogues, in the category of topological spaces, to finite sets in the

category of sets. This sense of smallness is also shared by closed real intervals because they are

bounded, but we will not explore this relation now.

We first relate compactness and finiteness by some immediate properties that generalize the facts

that a single point of the real line is a (trivial) closed interval, and that finite unions of closed real

intervals also share the properties listed in the beginning of this subsection.

Proposition 1.15. The point space 𝟙 is compact, and every finite union of compact subspaces of a

topological space 𝑿 is compact. Consequently, every finite space is compact.

In a more general direction, we can show that compact topologies are in some sense small.

Proposition 1.16. Let 𝑋 be a set.

1. The trivial topology {𝟘, 𝑋} on 𝑋 is compact.

2. If 𝒯 is a compact topology on 𝑋, then every smaller (coarser/weaker) topology 𝒯′ ⊆ 𝒯 on 𝑋 is

compact.
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Duality of compact and Hausdorff spaces We will compare the “smallness” of compact spaces

with the “largeness” of Hausdorff spaces. Although the definitions of Hausdorff spaces and compact

spaces seem unrelated, and not even formulated in similar terms, there is some kind of duality between

them. The following propositions can be trivially proved from the definitions, but they shed some

light on this duality. This section is based on [Tao09a].

One of the useful properties of closed real intervals is that they are (obviously) closed. One way to

understand the relation between the concepts of closed and compact subsets is by relating them both

in compact spaces and in Hausdorff spaces. The following results show that this relation is dual on

these types of spaces.

Proposition 1.17. Let 𝑿 be a compact space and 𝑺 ⊆ 𝑿 a subspace. If 𝑺 is closed, then it is compact.

Proof. Let 𝐹 ⊆ 𝑋 be a closed set and 𝒞 an open cover of 𝐹. Since 𝐹 is closed, its complement 𝐹 is open,

so 𝒞′ ≔ 𝒞 ∪ {𝐹} is an open cover of 𝑋. Since 𝑋 is compact, there exists an open subcover 𝒮′ ⊆ 𝒞′

of 𝑋. Defining 𝒮 ≔ 𝒮′ ∖ {𝐹}, it follows that 𝒮 ⊆ 𝒞 is an open subcover of 𝐹, which proves that 𝐹 is

compact. ◼

Proposition 1.18. Let 𝑿 be a Hausdorff space and 𝑺 ⊆ 𝑿 a subspace. If 𝑺 is compact, then it is closed.

Proof. See [Mun00, Theorem 26.3, p. 165]. ◼

Now notice that proposition 1.16 shows that the trivial topology is always compact, and that any

topology that is smaller then a compact topology is also compact. Dually, proposition 1.4 shows that

the discrete topology is Hausdorff, and that any topology that is greater then a Hausforff topology

is also Hausrdorff. Propositions 1.4 and 1.16 can be interpreted as meaning that compact spaces

have weaker topologies, while Hausdorff spaces have stronger topologies. Their relation can be better

understood by the next proposition.

Proposition 1.19. Let 𝑋 be a set, and𝒯 and𝒯′ topologies on 𝑋 such that𝒯 ⊆ 𝒯′. If (𝑋, 𝒯) is Hausdorff

and (𝑋, 𝒯′) is compact, then 𝒯 = 𝒯′.

Proof. Since 𝒯 ⊆ 𝒯′, every closed set in (𝑋, 𝒯) is a closed in (𝑋, 𝒯′) and every compact set in (𝑋, 𝒯′)

is a compact in (𝑋, 𝒯). Proposition 1.17 implies that every closed set of (𝑋, 𝒯′) is compact in (𝑋, 𝒯′),

and proposition 1.18 implies that every compact set of (𝑋, 𝒯) is closed in (𝑋, 𝒯). This shows that

(𝑋, 𝒯) and (𝑋, 𝒯′) have the same closed sets, hence the same open sets, therefore 𝒯 = 𝒯′. ◼

In particular this implies the following.

Proposition 1.20. Let 𝑿 be a compact topological space, 𝑿 ′ a Hausdorff topological space, and 𝑓∶

𝑋 → 𝑋 ′ a continuous transformation. If 𝑓 is invertible, then 𝑓−1 is continuous.

Proof. Let 𝐹 ⊆ 𝑋 be a closed set. We will show that (𝑓−1)−1(𝐹) is closed. The set 𝐹 is compact because

𝑋 is compact (proposition 1.17), so 𝑓(𝐹) ⊆ 𝑓(𝑋) = 𝑋 ′ is compact because 𝑓 is continuous, which

implis that 𝑓(𝐹) is closed because 𝑋 ′ is Hausdorff (proposition 1.18). Since 𝑓 is invertible, we have

(𝑓−1)−1(𝐹) = 𝐹, so we conclude that (𝑓−1)−1(𝐹) is closed. ◼

Proposition 1.21. Let 𝑿 be a Hausdorff topological space and (𝐾𝑖)𝑖∈𝐼 a collection of compact subsets of

𝑋. Then 𝐾∩ ≔ ⋂
𝑖∈𝐼

𝐾𝑖 is a compact set.

Proof. Let 𝒞 be an open cover of 𝐾∩. We must find a finite subcover of 𝒞 that covers 𝐾∩. Since 𝑿 is

Hausdorff, for every 𝑖 ∈ 𝐼 the compact set 𝐾𝑖 is closed (proposition 1.18), so the intersection 𝐾∩ is

closed. Take 𝑖0 ∈ 𝐼. Then 𝐾∩ is a closed subset of the compact set 𝐾𝑖0, therefore it is also compact. ◼

Proposition 1.22. Let 𝑿 be a non-empty compact Hausdorff topological space. If 𝑿 is perfect, then 𝑋 is

uncountable.

Proof. See [Mun00, Theorem 27.7, p. 176]. ◼
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Compact spaces and bases

Product of compact spaces

Proposition 1.23. A product of compact spaces is compact.

1.1.5 Local compactness

Definition 1.21. A locally compact topological space is a topological space in which every point has

a compact neighborhood.

Proposition 1.24. A Hausdorff topological space 𝑿 is locally compact if, and only if, every point of 𝑋

has a local base of closed compact neighborhoods.

Proof. See [Mun00, Theorem 29.2, p. 185]. ◼

Proposition 1.25. Let 𝑿 be a topological space. Then 𝑿 is locally compact and Hausdorff if, and only if,

there exists a compact Hausdorff superspace 𝑿 ′ ⊇ 𝑿 such that the difference 𝑋 ′ ∖ 𝑋 is a single point. If 𝑿 ′

and 𝑿″ are two such superspaces of 𝑿, there exists a homeomorphism from 𝑿 ′ to 𝑿″ that is the identity

on 𝑋.

If 𝑿 is compact, then such space 𝑿 ′ is the disjoint union of 𝑿 with the point space 𝟙. Otherwise, the

point of 𝑋 ′ ∖ 𝑋 is a limit point of 𝑋 in 𝑿 ′.

Proof. See [Mun00, Theorem 29.1, p. 183]. ◼

Definition 1.22. Let 𝑿 be a locally compact Hausdorff space that is not compact. The one-point

compactification of 𝑿 is the unique (up to homeomorphism) compact Hausdorff space superspace
∞
c(𝑿) ⊇ 𝑿 such that the difference

∞
c(𝑿) ∖ 𝑋 is a single point. The point at infinity of 𝑿 is the unique

point∞𝑋 ∈
∞
c(𝑿) ∖ 𝑋.

The one-point compactification of the 𝑑-dimensional real space ℝ𝑑 is the 𝑑-dimensional real

sphere 𝕊𝑑, that is,
∞
c(ℝ𝑑) = 𝕊𝑑

Convergence/divergence at infinity

Definition 1.23. Let 𝑿 be a non-compact, locally compact Hausdorff space. A sequence that diverges

to infinity in 𝑿 is a sequence (𝑥𝑛)𝑛∈ℕ in 𝑋 which satisfies that, for every compact set 𝐾 ⊆ 𝑋, there

exists a natural number 𝑛𝐾 ∈ ℕ such that, for every natural number 𝑛 ∈ ℕ, if 𝑛 ≥ 𝑛𝐾, then 𝑥𝑛 ∉ 𝐾.

Proposition 1.26. Let𝑿 be a non-compact, locally compact Hausdorff space,
∞
c(𝑿) its one-point compact-

ification, and (𝑥𝑛)𝑛∈ℕ a sequence in 𝑋. Then (𝑥𝑛)𝑛∈ℕ diveges to infinity in 𝑿 if, and only if, it converges

to∞𝑋 in
∞
c(𝑿).

This shows that we can use the notation lim𝑛→∞ 𝑥𝑛 = ∞𝑋 without ambiguity for a sequence that

diverges to infinity in 𝑿.

Definition 1.24. Let 𝑿 be a non-compact, locally compact Hausdorff space and 𝑧 ∈ ℂ. A complex-

valued function on 𝑋 that equals 𝑧 at infinity is a function 𝑓∶ 𝑋 → ℂ that satisfies the following: for

every 𝜀 ∈ ℝ>0, there exists a compact set 𝐾𝜀 ⊆ 𝑋 such that, for all 𝑥 ∈ 𝑋, if 𝑥 ∉ 𝐾𝜀, then |𝑓(𝑥)−𝑧| < 𝜀.

A complex-valued function on 𝑋 that vanishes at infinity is a function 𝑓∶ 𝑋 → ℂ that equals 0

at infinity. The space of all continuous complex-valued functions that vanish at infinity is denoted

𝒞0(𝑋,ℂ).
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Proposition 1.27. Let𝑿 be a locally compact Hausdorff space, 𝑓∶ 𝑋 → ℂ a complex-valued function on

𝑋 and 𝑧 ∈ ℂ. Then 𝑓 equals 𝑧 at infinity if, and only if, it can be extended to a function
∞
c(𝑓)∶

∞
c(𝑋) → ℂ

on the one-point compactification of 𝑿 that is continuous at the point at infinity∞𝑋 and
∞
c(𝑓)(∞𝑋) = 𝑧.

These concepts allow connecting locally compact Hausdorff spaces with commutative complete

normed involutive algebras over the complex numbers (commutative C*-algebras). The space𝒞0(𝑋,ℂ)

of complex-value functions that vanish at infinity is a commutative C*-algebra (a sub-algebra of the

bounded and continuous complex-value functions), and it is unital if, and only if, 𝑿 is compact,

in which case it equal the space of continuous functions. Chech [MSE10; Wik25a] for further

information.

1.2 Metric spaces

We denote a metric space by 𝑴 = (𝑀, | ⋅ , ⋅ |), being 𝑀 the set of points of the space and | ⋅ , ⋅ |∶

𝑀 ×𝑀 → ℝ≥0 the distance function of the space, denoted on points 𝑝, 𝑝′ ∈ 𝑀 by |𝑝, 𝑝′|. We denote

the diameter of a set 𝑆 ⊆ 𝑀 by Θ(𝑆) ≔ sup
𝑝,𝑝′∈𝑆

|𝑝, 𝑝′| and the open ball and closed ball of center

𝑐 ∈ 𝑀 and radius 𝑟 ∈ ℝ≥0 by B(𝑐; 𝑟) and B[𝑐; 𝑟], respectively. (Notice that B(𝑐; 𝑟) is always open and

B[𝑐; 𝑟] is always closed and B(𝑐; 𝑟) ⊆ B[𝑐; 𝑟], but there exist metric spaces in which the closure of an

open ball B(𝑐; 𝑟) is strictly contained in the closed ball B[𝑐; 𝑟].)

Proposition 1.28. Every metric space is Hausdorff.

Definition 1.25. Let𝑴 = (𝑀, | ⋅ , ⋅ |) and𝑴′ = (𝑀, | ⋅ , ⋅ |′) be metric spaces. A Lipschitz (or controlled)

transformation from𝑴 to𝑴′ is a transformation𝑓∶ 𝑀 → 𝑀′ for which there exists a number 𝛿 ∈ ℝ≥0

such that, for every 𝑝, 𝑞 ∈ 𝑀,

|𝑓(𝑝), 𝑓(𝑞)|′ ≤ 𝛿|𝑝, 𝑞|.

The distortion (or dilation) of 𝑓 is the least such number 𝛿, denoted ⟪𝑓⟫.

Definition 1.26. Let 𝑴 and 𝑴′ be metric spaces. A contraction from 𝑴 to 𝑴′ is a Lipschitz transfor-

mation 𝑓∶ 𝑀 → 𝑀′ such that ⟪𝑓⟫ < 1.

Theorem 1.29 (Banach fixed point). Let𝑴 be a non-empty complete metric space and 𝑓∶ 𝑀 → 𝑀 a

contraction. There exists a unique fixed point 𝑝 ∈ 𝑀 and, for every point 𝑝′ ∈ 𝑀,

lim
𝑛→∞

𝑓𝑛(𝑝′) = 𝑝.

Definition 1.27. Let𝑴 = (𝑀, | ⋅ , ⋅ |) and𝑴′ = (𝑀, | ⋅ , ⋅ |′) be metric spaces and 𝛼 ∈ ℝ>0. An 𝛼-order

Hölder (or 𝛼-order controlled) transformation from𝑴 to𝑴′ is a transformation 𝑓∶ 𝑀 → 𝑀′ for which

there exists a number 𝛿 ∈ ℝ≥0 such that, for every 𝑝, 𝑞 ∈ 𝑀,

|𝑓(𝑝), 𝑓(𝑞)|′ ≤ 𝛿|𝑝, 𝑞|𝛼.

The 𝛼-order distortion (or 𝛼-order dilation) of 𝑓 is the least such number 𝛿, denoted ⟪𝑓⟫𝛼.

1.2.1 Completeness

Definition 1.28. Let 𝑴 = (𝑀, | ⋅ , ⋅ |) be a metric space. A Cauchy sequence on 𝑴 is a sequence

(𝑝𝑛)𝑛∈ℕ on𝑀 that satisfies the following: for every 𝜀 ∈ ℝ>0, there exists 𝑛𝜀 ∈ ℕ such that, for every

𝑛, 𝑛′ ∈ ℕ, if 𝑛 ≥ 𝑛𝜀 and 𝑛′ ≥ 𝑛𝜀 then |𝑝𝑛, 𝑝𝑛′| ≤ 𝜀. A complete metric space is a metric space in which

every Cauchy sequence has a limit.
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Definition 1.29. A metrizable topological space is a topological space𝑴 = (𝑀,𝒯) for which there

exists a metric | ⋅ , ⋅ | that generates the topology 𝒯 of 𝑴. A completely metrizable topological space is a

topological space 𝑴 = (𝑀,𝒯) for which there exists a metric | ⋅ , ⋅ | that generates the topology 𝒯 and

(𝑀, | ⋅ , ⋅ |) is a complete metric space.

Proposition 1.30. Every closed subspace of a complete metric space is complete.

Proposition 1.31. Ametrizable space𝑴 isℵ0-generated (second-countable) if, and only if, it isℵ0-dense.

Proof. If 𝑴 is ℵ0-generated, then it is ℵ0-dense (proposition 1.5). For the converse, let | ⋅ , ⋅ | be

a metric compatible with 𝑴. If 𝑴 is ℵ0-dense, let 𝐷 be a countable dense set and consider the set

ℬ ≔ {B(𝑐; 𝑟) | 𝑝 ∈ 𝐷, 𝑟 ∈ ℚ>0}. The set ℬ is a countable basis for𝑴. ◼

Proposition 1.32 (Cantor). Let𝑴 be a complete metric space and𝑀 ⊇ 𝐹0 ⊇ 𝐹1 ⊇ … a decreasing

sequence of non-empty closed sets with diameter lim𝑛→∞Θ(𝐹𝑛) = 0. Then there exists a point 𝑝∞ ∈ 𝑀

such that

⋂
𝑛∈ℕ

𝐹𝑛 = {𝑝∞}

and, for every sequence (𝑝𝑛)𝑛∈ℕ in𝑀 such that 𝑝𝑛 ∈ 𝐹𝑛,

lim
𝑛→∞

𝑝𝑛 = 𝑝∞.

Proof. For every 𝑛 ∈ ℕ, the set 𝐹𝑛 is non-empty, so there exists a point 𝑝𝑛 ∈ 𝐹𝑛. The sequence (𝑝𝑛)𝑛∈ℕ
is Cauchy. To see this, take 𝜀 > 0. Since lim𝑛→∞Θ(𝐹𝑛) = 0, there exists 𝑛𝜀 ∈ ℕ such that Θ(𝐹𝑛𝜀) ≤ 𝜀.

Now, for every 𝑛, 𝑛′ ∈ ℕ such that 𝑛 ≥ 𝑛𝜀 and 𝑛′ ≥ 𝑛𝜀, we have 𝐹𝑛 ∪ 𝐹𝑛′ ⊆ 𝐹𝑛𝜀, so

|𝑝𝑛, 𝑝𝑛′| ≤ Θ(𝐹𝑛𝜀) ≤ 𝜀.

Since 𝑴 is complete, there exists a limit point 𝑝∞ ≔ lim𝑛→∞ 𝑝𝑛. For every 𝑛, 𝑛′ ∈ ℕ such that

𝑛′ ≥ 𝑛, we have 𝑝𝑛′ ∈ 𝐹𝑛′ ⊆ 𝐹𝑛; since 𝐹𝑛 is closed, this implies that 𝑝∞ ∈ 𝐹𝑛, which in turn implies

that 𝑝∞ ∈ ⋂
𝑛∈ℕ

𝐹𝑛. This shows that⋂
𝑛∈ℕ

𝐹𝑛 ≠ 𝟘. Finally, from the fact that

Θ(
⋂
𝑛∈ℕ

𝐹𝑛) ≤ inf
𝑛≥0

Θ(𝐹𝑛) = 0

it follows that⋂
𝑛∈ℕ

𝐹𝑛 = {𝑝∞}. ◼

1.2.2 Compactness

Definition 1.30. A totally bounded metric space is a metric space 𝑴 such that, for every radius

𝑟 ∈ ℝ>0, there exists a finite open 𝑟-cover of 𝑀.

Proposition 1.33 (Uniform compactness/Heine-Borel). A metric space𝑴 is compact if, and only if, it

is complete and totally bounded.

Proof. Check [Mun00, Theorem 45.1, p. 276]. ◼

This proposition is true for every uniform space.

Definition 1.31. A sequentially compact metric space is a metric space 𝑴 for which every sequence

(𝑝𝑛)𝑛∈ℕ in𝑀 has a convergent subsequence whose limit is in𝑀.

Proposition 1.34 (Countable uniform compactness). A metric space𝑴 is compact if, and only if, it is

sequentially compact.

Proof. Check [Mun00, Theorem 28.2, p. 179]. ◼

This proposition is true for every first-countable uniform space.
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Compact set distance Remember that in a metric space𝑴 we denote the set of compact subsets

of 𝑀 by 𝒯⬩, and the non-empty comapact sets by 𝒯⬩⊃𝟘 = 𝒯⬩ ∖ {𝟘}, the closed ball of center 𝑐 ∈ 𝑀 and

radius 𝑟 ∈ ℝ≥0 by B[𝑐; 𝑟], also called the closed 𝑟-neighborhood of 𝑐, and the closed 𝑟-neighborhood

of a set 𝐶 ⊆ 𝑀 by

B[𝐶; 𝑟] =
⋃
𝑐∈𝐶

B[𝑐; 𝑟].

Definition 1.32. Let𝑴 be a metric space and 𝐾, 𝐾′ ⊆ 𝑀 non-empty compact sets. The (Hausdorff )

compact set distance between 𝐾 and 𝐾′ is

|𝐾, 𝐾′|⬩ ≔ inf {𝑟 ∈ ℝ≥0 | 𝐾 ⊆ B[𝐾′; 𝑟], 𝐾′ ⊆ B[𝐾; 𝑟]}.

The (Hausdorff ) compact set distance on the set 𝒯⬩⊃𝟘 of non-empty compact sets is the function

| ⋅ , ⋅ |⬩∶ 𝒯⬩⊃𝟘 × 𝒯⬩⊃𝟘 ⟶ ℝ≥0

(𝐾, 𝐾′)⟼ |𝐾, 𝐾′|⬩.

The value |𝐶, 𝐶′|⬩ can actually be defined for any non-empty subset of the metric space, but it can

infinite, and the function | ⋅ , ⋅ |⬩ can fail to be a distance.

Exercise 1.1. Show that

|𝐾, 𝐾′|⬩ = max{sup
𝑝∈𝐾

|𝑝, 𝐾′|, sup
𝑝′∈𝐾′

|𝑝′, 𝐾|}.

The function | ⋅ , ⋅ |⬩ is in fact a distance over the non-empty closed and bounded subsets of the

space, but here we restrict it to the non-empty compact sets because that will be our main use for it.

Proposition 1.35. Let𝑴 be a metric space. The compact set distance | ⋅ , ⋅ |⬩ is a distance on 𝒯⬩⊃𝟘.

Proof. Notice that, for every 𝐾, 𝐾′ ∈ 𝒯⬩⊃𝟘, since 𝐾 and 𝐾′ are compact,m they are bounded, so there

exists a point𝑝 ∈ 𝑀 and radius 𝑟 ∈ ℝ>0 such that𝐾∪𝐾′ ⊆ B(𝑝; 𝑟), which implis that |𝐾, 𝐾′| < 2𝑟 < ∞.

Now we need to prove separation, symmetry and the triangle inequality.

1. (Separation) Let 𝐾, 𝐾′ ∈ 𝒯⬩⊃𝟘. If 𝐾 = 𝐾′, then B[𝐾; 0] = 𝐾 = 𝐾′ and B[𝐾′; 0] = 𝐾′ = 𝐾, so

|𝐾, 𝐾′|⬩ = 0. Conversely, if |𝐾, 𝐾′|⬩ = 0, then, for every 𝑟 ∈ ℝ>0, 𝐾 ⊆ B[𝐾′; 𝑟] and 𝐾′ ⊆ B[𝐾; 𝑟].

This implies that every point of 𝐾 is a point of accumulation of 𝐾′ and vice-versa. Since 𝐾 and

𝐾′ are compact in the metric space𝑴, they are closed, so 𝐾 ⊆ 𝐾′ and 𝐾′ ⊆ 𝐾, therefore 𝐾 = 𝐾′.

2. (Symmetry) Let 𝐾, 𝐾′ ∈ 𝒯⬩⊃𝟘. Then |𝐾, 𝐾′|⬩ = |𝐾′, 𝐾|⬩ follows directly from the definition of

the compact set distance.

3. (Triangle inequality) Let us denote

𝑅 ≔ {𝑟 ∈ ℝ≥0 | 𝐾 ⊆ B[𝐾″; 𝑟], 𝐾″ ⊆ B[𝐾; 𝑟]},

𝑅′ ≔ {𝑟 ∈ ℝ≥0 | 𝐾 ⊆ B[𝐾′; 𝑟], 𝐾′ ⊆ B[𝐾; 𝑟]},

𝑅″ ≔ {𝑟 ∈ ℝ≥0 | 𝐾
′ ⊆ B[𝐾″; 𝑟], 𝐾″ ⊆ B[𝐾′; 𝑟]},

so that |𝐾, 𝐾″|⬩ = inf𝑅, |𝐾, 𝐾′|⬩ = inf𝑅′ and |𝐾′, 𝐾″|⬩ = inf𝑅″.

Take 𝑟′ ∈ 𝑅′ and 𝑟″ ∈ 𝑅″. From the definition of 𝑅′, we have𝐾 ⊆ B[𝐾′; 𝑟′] and𝐾′ ⊆ B[𝐾; 𝑟′];

from the definition of 𝑅″, we have 𝐾′ ⊆ B[𝐾″; 𝑟″] and 𝐾″ ⊆ B[𝐾′; 𝑟″].

Take 𝑞 ∈ B[𝐾′; 𝑟′]. Then there exists 𝑞′ ∈ 𝐾′ such that 𝑞 ∈ B[𝑞′; 𝑟′], so |𝑞′, 𝑞| ≤ 𝑟′. Since

𝐾′ ⊆ B[𝐾″; 𝑟″], there exists 𝑞″ ∈ 𝐾″ such that 𝑞′ ∈ B[𝑞″; 𝑟″], so |𝑞″, 𝑞′| ≤ 𝑟″. Then it follows

from the triangle inequality for | ⋅ , ⋅ | that

|𝑞″, 𝑞| ≤ |𝑞″, 𝑞′| + |𝑞′, 𝑞| = 𝑟″ + 𝑟′ = 𝑟′ + 𝑟″,
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so 𝑞 ∈ B[𝑞″; 𝑟′ + 𝑟″], hence B[𝐾′; 𝑟′] ⊆ B[𝐾″; 𝑟′ + 𝑟″]. Therefore we obtain

𝐾 ⊆ B[𝐾′; 𝑟′] ⊆ B[𝐾″; 𝑟′ + 𝑟″].

In the same way, we also have 𝐾″ ⊆ B[𝐾′; 𝑟′ + 𝑟″]. This shows that 𝑟′ + 𝑟″ ∈ 𝑅, so 𝑅′ + 𝑅″ ⊆ 𝑅,

and we conclude that

|𝐾, 𝐾″|⬩ = inf𝑅 ≤ inf(𝑅′ + 𝑅″) = inf𝑅′ + inf𝑅″ = |𝐾, 𝐾′|⬩ + |𝐾′, 𝐾″|⬩. ◼

Proposition 1.36. Let𝑴 be a metric space.

1. If𝑴 is complete, then the metric space (𝒯⬩⊃𝟘, | ⋅ , ⋅ |⬩) is complete.

2. If𝑴 is totally bounded, then the metric space (𝒯⬩⊃𝟘, | ⋅ , ⋅ |⬩) is totally bounded.

3. If𝑴 is compact, then the metric space (𝒯⬩⊃𝟘, | ⋅ , ⋅ |⬩) is compact.

1.2.3 Iterated function systems

Remember that, for every 𝑘 ∈ ℕ, we denote ⟦𝑘⟧ = {𝑛 ∈ ℕ | 𝑛 < 𝑘} = {0,… , 𝑘 − 1}. For each

𝑛 ∈ ℕ, the elements of ⟦𝑘⟧𝑛 are finite sequences denoted 𝑤 = (𝑤0,… ,𝑤𝑛−1), and the elements of

𝑤 ∈ ⟦𝑘⟧ℕ are inifite sequences denoted 𝑤 = (𝑤0, 𝑤1,…), whose restriction to the first 𝑛 terms is

denoted 𝑤|𝑛 = (𝑤0,… ,𝑤𝑛−1).

Definition 1.33. Let 𝑴 be a metric space. An iterated function system (IFS) on 𝑀 is a sequence

𝑓 = (𝑓0,… , 𝑓𝑘−1) (with 𝑘 ≥ 2) of transformations 𝑐𝑖∶ 𝑀 → 𝑀. For every sequence 𝑤 ∈ ⟦𝑘⟧𝑛, we

denote

𝑓𝑤 ≔ 𝑓𝑤0 ∘ ⋯ ∘ 𝑓𝑤𝑛−1.

The direct image of 𝑓 is the function

𝑓∶ 2𝑀 ⟶2𝑀

𝑋⟼

𝑘−1

⋃
𝑖=0

𝑓𝑖(𝑋).

A contracting iterated function system is an iterated function system 𝑐 = (𝑐0,… , 𝑐𝑘−1) for which

every 𝑐𝑖 is a contraction.

Definition 1.34. An attractor of 𝑓 is a non-empty compact set 𝐴 ⊆ 𝑀 such that

𝐴 = 𝑓(𝐴) =

𝑘−1

⋃
𝑖=0

𝑓𝑖(𝐴).

The following proposition is based on [Fal14, Theorem 9.1, p. 135].

Proposition 1.37 (Existence and uniqueness of the attractor). Let𝑴 be a non-empty compact metric

space and 𝑐 = (𝑐0,… , 𝑐𝑘−1) a contracting iterated function system on𝑀. There exists a unique attractor

𝐴 ⊆ 𝑀 of 𝑐 and, for every non-empty compact set 𝐾 ⊆ 𝑀 that is positive 𝑐𝑖-invariant for every 𝑖 ∈ ⟦𝑘⟧,

𝐴 =

∞

⋂
𝑛=0

𝑐𝑛(𝐾).
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Proof. Let us first note that the metric space𝑴 is complete, because it is compact (proposition 1.33),

so the metric space (𝒯⬩⊃𝟘, | ⋅ , ⋅ |⬩) is also complete (proposition 1.36), and it is non-empty because

𝑀 ∈ 𝒯⬩⊃𝟘.

We denote the distortion of 𝑐𝑖 by ⟪𝑐𝑖⟫. Since 𝑐𝑖 is a contraction for every 𝑖 ∈ ⟦𝑘⟧, then 0 ≤

max0≤𝑖≤𝑘−1⟪𝑐𝑖⟫ < 1. Since, for every non-empty compact sets 𝐾, 𝐾′ ∈ 𝒯⬩⊃𝟘, we have

|𝑐(𝐾), 𝑐(𝐾)|⬩ =
|
|
|
|

𝑘−1

⋃
𝑖=0

𝑐𝑖(𝐾),

𝑘−1

⋃
𝑖=0

𝑐𝑖(𝐾
′)
|
|
|
|
⬩

≤ max
0≤𝑖<𝑘

|𝑐𝑖(𝐾), 𝑐𝑖(𝐾
′)|

⬩
≤ (max

0≤𝑖<𝑘
⟪𝑐𝑖⟫) |𝐾, 𝐾

′|
⬩
,

this shows that 𝑐∶ 𝒯⬩⊃𝟘 → 𝒯⬩⊃𝟘 is a contraction.

An attractor of 𝑐 is a fixed point of 𝑐∶ 𝒯⬩⊃𝟘 → 𝒯⬩⊃𝟘, because it satisfies 𝑐(𝐴) = 𝐴 by definition.

Theorem 1.29 implies that there exists a unique fixed point 𝐴 ∈ 𝒯⬩⊃𝟘, that is, 𝐴 is the unique attractor

of 𝑐, and that, for every 𝐾 ∈ 𝒯⬩⊃𝟘, lim𝑛→∞ 𝑐𝑛(𝐾) = 𝐴.

If 𝐾 ∈ 𝒯⬩⊃𝟘 is positive 𝑐𝑖-invariant for every 𝑖 ∈ ⟦𝑘⟧, then 𝑐(𝐾) = ⋃
𝑘−1

𝑖=0
𝑐𝑖(𝐾) ⊆ 𝐾. This implies

that (𝑐𝑛(𝐾))𝑛∈ℕ is a decreasing sequence, so

∞

⋂
𝑛=0

𝑐𝑛(𝐾) = lim
𝑛→∞

𝑐𝑛(𝐾) = 𝐴. ◼

Lemma 1.38. Let𝑴 be a complete metric space, 𝑐 = (𝑐0,… , 𝑐𝑘−1) a contracting iterated function system

on𝑀 and 𝐴 ⊆ 𝑀 its attractor. If the contractions 𝑐𝑖 are injetive and there is a non-empty compact set 𝐾

that is positive 𝑐𝑖-invariant for every 𝑖 ∈ ⟦𝑘⟧ and such that the sets 𝑐𝑖(𝐴) are pairwise disjoint, then, for

every 𝑛,𝑚 ∈ ℕ, 𝑤 ∈ ⟦𝑘⟧𝑛 and 𝑤′ ∈ ⟦𝑘⟧𝑛+𝑚, if 𝑤 ≠ 𝑤′|𝑛 then

𝑐𝑤(𝐾) ∩ 𝑐𝑤′(𝐾) = 𝟘.

Proposition 1.39 (Coding the attractor). Let 𝑴 be a complete metric space, 𝑐 = (𝑐0,… , 𝑐𝑘−1) a

contracting iterated function system on𝑀 and 𝐴 ⊆ 𝑀 the attractor of 𝑐. For every point 𝑥 ∈ 𝐴, there

exists a sequence𝑤 ∈ ⟦𝑘⟧ℕ such that, for every non-empty compact set𝐾 ⊆ 𝑀 that is positive 𝑐𝑖-invariant

for every 𝑖 ∈ ⟦𝑘⟧,

{𝑥} =

∞

⋂
𝑛=0

𝑐𝑤|𝑛(𝐾).

Besides that,

𝐴 =
⋃

𝑤∈⟦𝑘⟧ℕ

∞

⋂
𝑛=0

𝑐𝑤|𝑛(𝐾).

Proof. Notice that

𝑐𝑛(𝐾) =
⋃

𝑤∈⟦𝑘⟧𝑛

𝑐𝑤(𝐾).

Since 𝐴 = ⋂
∞

𝑛=0
𝑐𝑛(𝐾) by proposition 1.37, then

𝐴 =

∞

⋂
𝑛=0

⋃
𝑤∈⟦𝑘⟧𝑛

𝑐𝑤(𝐾).

Let 𝑥 ∈ 𝐴. Then, for every 𝑛 ∈ ℕ, there exists 𝑤(𝑛) ∈ ⟦𝑘⟧𝑛 such that 𝑥 ∈ 𝑐𝑤(𝑛)(𝐾).

◼
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Notice that

Θ(𝑐𝑤|𝑛(𝐾)) = Θ(𝑐𝑤0 ∘ ⋯ ∘ 𝑐𝑤𝑛−1(𝐾)) ≤ ⟪𝑐𝑤0⟫⋯⟪𝑐𝑤𝑛−1⟫Θ(𝐾) ≤ (max
0≤𝑖<𝑘

⟪𝑐𝑖⟫)
𝑛

Θ(𝐾),

so 0 ≤ max0≤𝑖<𝑘⟪𝑐𝑖⟫ < 1 implies that lim𝑛→∞Θ(𝑐𝑤|𝑛(𝐾)) = 0. Since 𝐾 is positive 𝑐𝑖-invariant for

every 𝑖 ∈ ⟦𝑘⟧, then, for every 𝑛 ∈ ℕ, we have 𝑐𝑤|𝑛+1(𝐾) ⊆ 𝑐𝑤𝑛(𝐾). Since the contractions 𝑐𝑖 are

continuous and 𝐾 is compact, then 𝑐𝑖(𝐾) is compact, hence closed. So proposition 1.32 implies that

⋂
∞

𝑛=0
𝑐𝑤|𝑛(𝐾) consists of a single point, which we denote 𝑝𝑤.

Proposition 1.40. Let𝑴 be a complete metric space, 𝑐 = (𝑐0,… , 𝑐𝑘−1) a contracting iterated function

system on𝑀 and 𝐴 ⊆ 𝑀 the attractor of 𝑐. If every 𝑐𝑖 is injective and the sets 𝑐𝑖(𝐴) are pairwise disjoint,

then the attractor 𝐴 is totally disconnected.

The Cantor set Let 𝕀 ≔ [0, 1] denote the unit interval in the real line ℝ and, for each 𝑘 ∈ ℕ≥1,

⟦𝑘⟧ ≔ {𝑛 ∈ ℕ | 𝑛 < 𝑘} = {0,… , 𝑘 − 1}. For each 𝑤 ∈ ⟦𝑘⟧, define the transformation

𝑐𝑤∶ 𝕀⟶ 𝕀

𝑥⟼
2𝑤 + 𝑥

2𝑘 − 1
.

The transformations 𝑐0 and 𝑐1 are contractions with factor
1

2𝑘−1
, and they are injective.

We define, for each finite sequence (of length 𝑛 ∈ ℕ) 𝑤 = (𝑤0,… ,𝑤𝑛−1) ∈ ⟦𝑘⟧𝑛, the contraction

𝑐𝑤 ≔ 𝑐𝑤0 ∘ ⋯ ∘ 𝑐𝑤𝑛−1.

The empty sequence just gives the identity 𝑐𝟘 = I and the unit interval 𝑐𝟘(𝕀) = 𝕀, and the first iterates

gives

𝑐𝑤(𝕀) = [
2𝑤

2𝑘 − 1
,
2𝑤 + 1

2𝑘 − 1
].

Since 𝑐0 and 𝑐1 are contractions with factor
1

2𝑘−1
, we haveΘ(𝑐𝑤(𝕀)) =

1

(2𝑘−1)𝑛
. In general, for𝑤 ∈ ⟦𝑘⟧𝑛,

we have

𝑐𝑤(𝕀) = [

𝑛−1

+
𝑖=0

2𝑤𝑖

(2𝑘 − 1)𝑖+1
,

𝑛−1

+
𝑖=0

2𝑤𝑖

(2𝑘 − 1)𝑖+1
+

1

(2𝑘 − 1)𝑛
].

Lemma 1.41. Let 𝑛,𝑚 ∈ ℕ, 𝑤 ∈ ⟦𝑘⟧𝑛 and 𝑤′ ∈ ⟦𝑘⟧𝑛+𝑚. If 𝑤 ≠ 𝑤′|𝑛 then

𝑐𝑤(𝕀) ∩ 𝑐𝑤′(𝕀) = 𝟘.

Proof. We first prove the case 𝑚 = 0 by induction on 𝑛. The initial case 𝑛 = 0 is vacuosly true. For

the sucessor case, suppose this is true for every natural numbers from 0 to 𝑛 and take 𝑤,𝑤′ ∈ ⟦𝑘⟧𝑛+1

such that 𝑤 ≠ 𝑤′. We consider 2 cases. (1) If 𝑤0 ≠ 𝑤′
0, then 𝑐𝑤0(𝕀) ∩ 𝑐𝑤′0(𝕀) = 𝟘. Since 𝑐𝑤(𝕀) =

𝑐𝑤0(𝑐(𝑤1,…,𝑤𝑛)
(𝕀)) ⊆ 𝑐𝑤0(𝕀) and 𝑐𝑤′(𝕀) = 𝑐𝑤′0(𝑐(𝑤

′
1,…,𝑤′𝑛)

(𝕀)) ⊆ 𝑐𝑤′0(𝕀), it follows that 𝑐𝑤(𝕀) ∩ 𝑐𝑤′(𝕀) = 𝟘.

(2) If 𝑤0 = 𝑤′
0, then we must have (𝑤1,… ,𝑤𝑛) ≠ (𝑤′

1,… ,𝑤′
𝑛), so, by the induction hypothesis, we

obtain 𝑐(𝑤1,…,𝑤𝑛)
(𝕀) ∩ 𝑐(𝑤′1,…,𝑤′𝑛)

(𝕀) = 𝟘. Since 𝑐𝑤0 = 𝑐𝑤′0 is injetive, then

𝑐𝑤(𝕀)∩𝑐𝑤′(𝕀) = 𝑐𝑤0(𝑐(𝑤1,…,𝑤𝑛)
(𝕀))∩𝑐𝑤′0(𝑐(𝑤

′
1,…,𝑤′𝑛)

(𝕀)) = 𝑐𝑤0(𝑐(𝑤1,…,𝑤𝑛)
(𝕀)∩𝑐(𝑤′1,…,𝑤′𝑛)

(𝕀)) = 𝑐𝑤0(𝟘) = 𝟘.

This completes the induction on 𝑛 for 𝑚 = 0. We now prove the result by induction on 𝑚. The initial

case 𝑚 = 0 has just been proved. For the successor case, suppose that it is true for every natural

number from 0 to 𝑚 and take 𝑤 ∈ ⟦𝑘⟧𝑛 and 𝑤′ ∈ ⟦𝑘⟧𝑛+𝑚+1. Notice that 𝑐𝑤′(𝕀) ⊆ 𝑐(𝑤′0,…,𝑤′𝑛−1)
(𝕀),

so if 𝑤 ≠ (𝑤′
0,… ,𝑤′

𝑛−1), then from the case 𝑚 = 0 it follows that 𝑐𝑤(𝕀) ∩ 𝑐(𝑤′0,…,𝑤′𝑛−1)
(𝕀) = 𝟘, so

𝑐𝑤(𝕀) ∩ 𝑐𝑤′(𝕀) = 𝟘. ◼
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We also define, for each sequence 𝑤 ∈ ⟦𝑘⟧ℕ, the set

𝑐𝑤(𝕀) ≔ ⋂
𝑛∈ℕ

𝑐(𝑤0,…,𝑤𝑛−1)
(𝕀) =

⋂
𝑛∈ℕ

𝑐𝑤|𝑛(𝕀).

We have a decreasing sequence of closed sets

𝕀 ⊇ 𝑐𝑤0(𝕀) ⊇ … ⊇ 𝑐𝑤|𝑛(𝕀) ⊇ …

with diameter Θ(𝑐(𝑤0,…,𝑤𝑛−1)
(𝕀)) =

1

(2𝑘−1)𝑛
→ 0, so proposition 1.32 guarantees that there exists a

unique point 𝑝𝑤 ∈ 𝕀 such that 𝑐𝑤(𝕀) = {𝑝𝑤}.

Lemma 1.42. Let 𝑤,𝑤′ ∈ ⟦𝑘⟧ℕ. If 𝑤 ≠ 𝑤′, then 𝑐𝑤(𝕀) ∩ 𝑐𝑤′(𝕀) = 𝟘.

Proof. There exists 𝑛 ∈ ℕ such that 𝑤𝑛 ≠ 𝑤′
𝑛, so 𝑐(𝑤0,…,𝑤𝑛)

(𝕀) ∩ 𝑐(𝑤′0,…,𝑤′𝑛)
(𝕀) = 𝟘 (lemma 1.41); since

𝑐𝑤(𝕀) ⊆ 𝑐(𝑤0,…,𝑤𝑛)
(𝕀) and 𝑐𝑤′(𝕀) ⊆ 𝑐(𝑤′0,…,𝑤′𝑛)

(𝕀), it follows that 𝑐𝑤(𝕀) ∩ 𝑐𝑤′(𝕀) = 𝟘. ◼

Finally, for each 𝑛 ∈ ℕ we define the set

𝐶(𝑛) ≔
⋃

𝑤∈⟦𝑘⟧𝑛

𝑐𝑤(𝕀).

The set 𝐶(𝑛) is a disjoint union of the sets 𝑐𝑤(𝕀), since these sets are pairwise disjoint.

Definition 1.35. The Cantor set is the set

𝕂𝑘 ≔ ⋂
𝑛∈ℕ

𝐶(𝑛).

𝑐0∪(𝕀)

𝑐1∪(𝕀)

𝑐2∪(𝕀)

𝑐3∪(𝕀)

𝑐4∪(𝕀)

𝑐5∪(𝕀)

𝑐6∪(𝕀)

𝑐0(𝕀)

𝑐00(𝕀)

000

𝑐01(𝕀) 𝑐10(𝕀) 𝑐11(𝕀)

𝑐1(𝕀)

𝕀

001 010 011 100 101 110 111

Figure 1. The first seven pre-fractals of the Cantor set 𝕂2.

Proposition 1.43. The transformation

ℎ∶ ⟦𝑘⟧ℕ ⟶ 𝕂𝑘

𝑤⟼

∞

+
𝑖=0

2𝑤𝑖

(2𝑘 − 1)𝑖+1

is a homeomorphism between ⟦𝑘⟧ℕ (with the product topology) and 𝕂𝑘 (with the subspace topology

inherited from 𝕀).
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Proof. We need to show that ℎ is well-defined in the sense that its image is contained in 𝕂𝑘, that ℎ is

injective and surjective, and that ℎ is continuous and its inverse is continuous.

1. (ℎ(⟦𝑘⟧ℕ) ⊆ 𝕂𝑘) For every 𝑛 ∈ ℕ and 𝑤 ∈ ⟦𝑘⟧𝑛, define the point 𝑝𝑤 ≔ +𝑛−1

𝑖=0

2𝑤𝑖

(2𝑘−1)𝑖+1
. We

will prove by induction on 𝑛 that 𝑝𝑤 ∈ 𝑐𝑤(𝕀). For the initial case, 𝑝0 = 0 ∈ 𝕀 = 𝑐𝟘(𝕀). For the

successor case, assume it is true for every natural number from 0 to 𝑛, and take 𝑤 ∈ ⟦𝑘⟧𝑛+1.

By the induction hypothesis, 𝑝(𝑤1,…,𝑤𝑛)
∈ 𝑐(𝑤1,…,𝑤𝑛)

(𝕀). Calculating 𝑐𝑤0 at this point, we obtain

𝑐𝑤0(𝑝(𝑤1,…,𝑤𝑛)
) = 𝑐𝑤0 (

𝑛−1

+
𝑖=0

2𝑤𝑖

(2𝑘 − 1)𝑖+1
)

=
2𝑤0

(2𝑘 − 1)
+

1

(2𝑘 − 1)

𝑛−1

+
𝑖=0

2𝑤𝑖

(2𝑘 − 1)𝑖+1

=
2𝑤0

(2𝑘 − 1)
+

𝑛

+
𝑖=1

2𝑤𝑖

(2𝑘 − 1)𝑖+1

=

𝑛

+
𝑖=0

2𝑤𝑖

(2𝑘 − 1)𝑖+1
= 𝑝𝑤,

so 𝑝𝑤 ∈ 𝑐𝑤0(𝑐(𝑤1,…,𝑤𝑛)
(𝕀)) = 𝑐𝑤(𝕀). This completes the induction proof.

Now take 𝑤 ∈ ⟦𝑘⟧ℕ. For every 𝑛 ∈ ℕ, we have 𝑝(𝑤0,…,𝑤𝑛−1)
∈ 𝑐(𝑤0,…,𝑤𝑛−1)

(𝕀) so it follows

from proposition 1.32 that lim𝑛→∞ 𝑝(𝑤0,…,𝑤𝑛−1)
∈ 𝑐𝑤(𝕀), hence we conclude that

ℎ(𝑤) =

∞

+
𝑖=0

2𝑤𝑖

(2𝑘 − 1)𝑖+1
= lim

𝑛→∞

𝑛−1

+
𝑖=0

2𝑤𝑖

(2𝑘 − 1)𝑖+1
= lim

𝑛→∞
𝑝(𝑤0,…,𝑤𝑛−1)

= 𝑝𝑤 ∈ 𝕂𝑘.

2. (ℎ is injective) Take 𝑤,𝑤′ ∈ ⟦𝑘⟧ℕ such that 𝑤 ≠ 𝑤′. We have just showed that ℎ(𝑤) = 𝑝𝑤 ∈

𝑐𝑤(𝕀) and ℎ(𝑤′) = 𝑝𝑤′ ∈ 𝑐𝑤′(𝕀). Since 𝑐𝑤(𝕀) ∩ 𝑐𝑤′(𝕀) = 𝟘, it follows that ℎ(𝑤) ≠ ℎ(𝑤′).

3. (ℎ is surjective) Take 𝑝 ∈ 𝕂𝑘. We will find a sequence 𝑤 ∈ ⟦𝑘⟧ℕ such that ℎ(𝑤) = 𝑝. By the

definition of 𝕂𝑘, for every 𝑛 ∈ ℕ, 𝑝 ∈ 𝐶(𝑛) and, since 𝐶(𝑛) is a disjoint union of the sets 𝑐𝑤(𝕀)

with 𝑤 ∈ ⟦𝑘⟧𝑛, there exists a unique 𝑤(𝑛) ∈ ⟦𝑘⟧𝑛 such that 𝑝 ∈ 𝑐𝑤(𝑛)(𝕀), so

𝑝 ∈
⋂
𝑛∈ℕ

𝑐𝑤(𝑛)(𝕀).

This implies that, for every 𝑛 ∈ ℕ, 𝑐𝑤(𝑛)(𝕀) ∩ 𝑐𝑤(𝑛+1)(𝕀) ≠ 𝟘, so it follows from lemma 1.41

that the first 𝑛 entries of 𝑤(𝑛+1) coincide with 𝑤(𝑛). Then there exists a sequence 𝑤 ∈ ⟦𝑘⟧ℕ

such that, for every 𝑛 ∈ ℕ, 𝑤(𝑛) = (𝑤0,… ,𝑤𝑛−1), therefore

𝑝 ∈
⋂
𝑛∈ℕ

𝑐𝑤(𝑛)(𝕀) = ⋂
𝑛∈ℕ

𝑐(𝑤0,…,𝑤𝑛−1)
(𝕀) = 𝑐𝑤(𝕀) = {𝑝𝑤}

and we conclude that 𝑝 = 𝑝𝑤 = ℎ(𝑤).

4. (ℎ is continuos) It is sufficient to show that, given a subbasis of 𝕂𝑘, the inverse image of each

subbasic set by ℎ is open in ⟦𝑘⟧ℕ. Notice that, for every 𝑛 ∈ ℕ, since the sets 𝑐𝑤(𝕀) with

𝑤 ∈ ⟦𝑘⟧𝑛 are pairwise disjoint, we can find pairwise disjoint open neighborhoods 𝐴𝑤 ⊆ 𝕀 of

𝑐𝑤(𝕀), and also pairwise disjoint open neighborhoods 𝐹𝑤 ⊆ 𝕀 of 𝑐𝑤(𝕀) (this is so because 𝕀 is a

normal space). Since 𝑐𝑤(𝕀) ∩ 𝐴𝑤 = 𝑐𝑤(𝕀) = 𝑐𝑤(𝕀) ∩ 𝐹𝑤, this shows that 𝑐𝑤(𝕀) is both an open and

a closed set in the subspace topology of 𝕂𝑘. This shows that ⋃𝑛 ∈ ℕ{𝑐𝑤(𝕀) | 𝑤 ∈ ⟦𝑘⟧𝑛} is a

subbasis of 𝕂𝑘. A subbasis of ⟦𝑘⟧ℕ is given by the cylinders C0,…,𝑛−1[𝑤0,… ,𝑤𝑛−1].
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We will show that, for every 𝑤 ∈ ⟦𝑘⟧𝑛,

ℎ−1(𝑐𝑤(𝕀)) = C0,…,𝑛−1[𝑤0,… ,𝑤𝑛−1] =

𝑛−1

⋂
𝑖=0

{𝑤′ ∈ ⟦𝑘⟧ℕ | 𝑤′
𝑖 = 𝑤𝑖}.

Since 𝑐𝑤(𝕀) = [+𝑛−1

𝑖=0

2𝑤𝑖

(2𝑘−1)𝑖+1
,+𝑛−1

𝑖=0

2𝑤𝑖

(2𝑘−1)𝑖+1
+

1

(2𝑘−1)𝑛
], we have that, for every 𝑤′ ∈ ⟦𝑘⟧ℕ,

ℎ(𝑤′) ∈ 𝑐𝑤(𝕀) if, and only if,

𝑛−1

+
𝑖=0

2𝑤𝑖

(2𝑘 − 1)𝑖+1
≤

∞

+
𝑖=0

2𝑤′
𝑖

(2𝑘 − 1)𝑖+1
≤

𝑛−1

+
𝑖=0

2𝑤𝑖

(2𝑘 − 1)𝑖+1
+

1

(2𝑘 − 1)𝑛
,

which is equivalent to

(1)

𝑛−1

+
𝑖=0

2(𝑤𝑖 − 𝑤′
𝑖)

(2𝑘 − 1)𝑖+1
≤

∞

+
𝑖=𝑛

2𝑤′
𝑖

(2𝑘 − 1)𝑖+1
≤

𝑛−1

+
𝑖=0

2(𝑤𝑖 − 𝑤′
𝑖)

(2𝑘 − 1)𝑖+1
+

1

(2𝑘 − 1)𝑛
.

If 𝑤′ ∈ C0,…,𝑛−1[𝑤0,… ,𝑤𝑛−1], then for every 𝑖 ∈ {0,… , 𝑛 − 1} we have 𝑤′
𝑖 = 𝑤𝑖, so

+𝑛−1

𝑖=0

2(𝑤𝑖−𝑤
′
𝑖)

(2𝑘−1)𝑖+1
= 0. Since

0 ≤

∞

+
𝑖=𝑛

2𝑤′
𝑖

(2𝑘 − 1)𝑖+1
≤

∞

+
𝑖=𝑛

2

(2𝑘 − 1)𝑖+1
=

1

(2𝑘 − 1)𝑛
,

it follows from formula (1) that ℎ(𝑤′) ∈ 𝑐𝑤(𝕀), so 𝑤′ ∈ ℎ−1(𝑐𝑤(𝕀)).

If 𝑤′ ∈ ℎ−1(𝑐𝑤(𝕀)), then ℎ(𝑤′) ∈ 𝑐𝑤(𝕀), so formula (1) holds. If (𝑤′
0,… ,𝑤′

𝑛−1) ≠

(𝑤0,… ,𝑤𝑛−1), there is some 𝑘 ∈ {0,… , 𝑛 − 1} such that 𝑤′
𝑘 ≠ 𝑤𝑘, and we have a contra-

diction. Since we have shown the inverse image of every subbasic set is a cylinder in ⟦𝑘⟧ℕ, we

conclude that ℎ is continuous.

5. (ℎ−1 is continuous) The space ⟦𝑘⟧ℕ is compact, because it is a product of compact spaces

(proposition 1.23), and 𝕂𝑘 is Hausdorff, because 𝕀 is Hausdorff (proposition 1.3), so it

follows from proposition 1.20 that ℎ−1 is also continuous.

◼

The construction of the Cantor set 𝕂𝑘 by this iterated function system can be used to show that

its Hausdorff dimension is log(𝑘)/ log(2𝑘 − 1) and its measure is stricty positive and finite [Fal14,

Theorem 9.3, p. 140]. The limit when 𝑘 → 1 does not give the correct dimension of 𝕂1 = 𝕀, though.

Besides that, we can modify the construction of 𝕂2 by taking any real number 𝑟 ∈ ]0, 1/2] and defining,

for each 𝑤 ∈ ⟦2⟧, the contraction

𝑐𝑤∶ 𝕀⟶ 𝕀

𝑥⟼ 𝑟((𝑟−1 − 1)𝑤 + 𝑥),

which has contraction constant 𝑟. This iterated function system will generate a Cantor set of Hausdorff

dimension − log(2)/ log(𝑟), which attains every value in ]0, 1] as 𝑟 varies in ]0, 1/2].

1.2.4 Examples of distances relevant for dynamics

Distance in countable product of metric spaces For the next definition, we adopt the notation

𝛼∞ = 0 for any 𝛼 ∈ ]0, 1[. Also, remember that inf 𝟘 = ∞.
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Definition 1.36. Let (𝑴𝑖)𝑖∈ℕ = (𝑀𝑖, | ⋅ , ⋅ |𝑖)𝑖∈ℕ be a countable collection of metric spaces with

diameter equal to 1, 𝑴 ≔ ×𝑖∈ℕ
𝑴𝑖 and 𝛼 ∈ ]0, 1[. The ultrametric (with weight 𝛼) in 𝑀 is the

function

| ⋅ , ⋅ |∧∶ 𝑀 ×𝑀⟶ ℝ≥0

(𝑝, 𝑝′)⟼ |𝑝, 𝑝′|∧ ≔ 𝛼inf{𝑖∈ℕ||𝑝𝑖,𝑝
′
𝑖 |𝑖≠0}.

Proposition 1.44. Let (𝑴𝑖)𝑖∈ℕ = (𝑀𝑖, | ⋅ , ⋅ |𝑖)𝑖∈ℕ be a countable collection of metric spaces (with

diameter equal to 1),𝑴 ≔×𝑖∈ℕ
𝑴𝑖 and 𝛼 ∈ ]0, 1[. The ultrametric (with weight 𝛼) | ⋅ , ⋅ |∧ in𝑀 is an

ultrametric in𝑀that generates the product topology on𝑴.

Proof. We start by proving that | ⋅ , ⋅ |∧ is well-defined in the sense that the codomain of | ⋅ , ⋅ |∧ is ℝ≥0.

Let 𝑝, 𝑝′ ∈ 𝑀. Since 0 < 𝛼 < 1 and∞ ≥ inf{𝑖 ∈ ℕ | |𝑝𝑖, 𝑝
′
𝑖|𝑖 ≠ 0} ≥ 0, it follows that

0 = 𝛼∞ ≤ 𝛼inf{𝑖∈ℕ||𝑝𝑖,𝑝
′
𝑖 |𝑖≠0} ≤ 𝛼0 = 1,

so 0 ≤ |𝑝, 𝑝′|∧ ≤ 1.

We now show that it is an ultrametric:

1. (Separation) Let 𝑝, 𝑝′ ∈ 𝑀. Notice that |𝑝, 𝑝′|∧ = 𝛼inf{𝑖∈ℕ||𝑝𝑖,𝑝
′
𝑖 |𝑖≠0} = 0 if, and only if, inf{𝑖 ∈ ℕ |

|𝑝𝑖, 𝑝
′
𝑖|𝑖 ≠ 0} = ∞, which holds if, and only if, {𝑖 ∈ ℕ | |𝑝𝑖, 𝑝

′
𝑖|𝑖 ≠ 0} = 𝟘. Since, for every 𝑖 ∈ ℕ,

the distance | ⋅ , ⋅ |𝑖 satisfies separation, then |𝑝𝑖, 𝑝
′
𝑖| = 0 holds if, and only if, 𝑝𝑖 = 𝑝′𝑖, which

implies that {𝑖 ∈ ℕ | |𝑝𝑖, 𝑝
′
𝑖|𝑖 ≠ 0} = 𝟘 is equivalent to 𝑝 = 𝑝′.

2. (Symmetry) Let 𝑝, 𝑝′ ∈ 𝑀. For every 𝑖 ∈ ℕ, the distance | ⋅ , ⋅ |𝑖 is symmetric, so it follows that

{𝑖 ∈ ℕ | |𝑝𝑖, 𝑝
′
𝑖|𝑖 ≠ 0} = {𝑖 ∈ ℕ | |𝑝′𝑖, 𝑝𝑖|𝑖 ≠ 0},

which implies that |𝑝, 𝑝′|∧ = |𝑝′, 𝑝|∧.

3. (Ultrametric inequality) For every 𝑝, 𝑝′ ∈ 𝑀, denote

𝜄(𝑝, 𝑝′) ≔ inf{𝑖 ∈ ℕ | |𝑝𝑖, 𝑝
′
𝑖|𝑖 ≠ 0}.

Let 𝑝, 𝑝′, 𝑝″ ∈ 𝑀. We first show a relation between the values 𝜄(𝑝, 𝑝″), 𝜄(𝑝, 𝑝′) and 𝜄(𝑝′, 𝑝″).

For every 𝑖 ∈ ℕ such that 𝑖 < min{𝜄(𝑝, 𝑝′), 𝜄(𝑝′, 𝑝″)}, it holds that |𝑝𝑖, 𝑝
′
𝑖|𝑖 = 0 and |𝑝′𝑖, 𝑝

″
𝑖 |𝑖 = 0,

so it follows from the triangular inequality for | ⋅ , ⋅ |𝑖 that |𝑝𝑖, 𝑝
″
𝑖 | ≤ |𝑝𝑖, 𝑝

′
𝑖|𝑖 + |𝑝

′
𝑖, 𝑝

″
𝑖 |𝑖 = 0. This

shows that

{𝑖 ∈ ℕ | |𝑝𝑖, 𝑝
″
𝑖 |𝑖 ≠ 0} ⊆ {𝑖 ∈ ℕ | |𝑝𝑖, 𝑝

′
𝑖|𝑖 ≠ 0} ∪ {𝑖 ∈ ℕ | |𝑝′𝑖, 𝑝

″
𝑖 |𝑖 ≠ 0},

which implies that

𝜄(𝑝, 𝑝″) ≥ min{𝜄(𝑝, 𝑝′), 𝜄(𝑝′, 𝑝″)}.

Since 𝛼 ∈ ]0, 1[, from this relation we conclude that

|𝑝, 𝑝″|∧ = 𝛼𝜄(𝑝,𝑝
″)

≤ 𝛼min{𝜄(𝑝,𝑝′),𝜄(𝑝′,𝑝″)}

= max{𝛼𝜄(𝑝,𝑝
′), 𝛼𝜄(𝑝

′,𝑝″)}

= max{|𝑝, 𝑝′|∧, |𝑝
′, 𝑝″|∧}.

Finally, we show that it generates the product topology. ◼
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Two important examples fit in the framework of proposition 1.44. When we take an integer

𝑛 ∈ ℤ>0 and𝑀𝑖 = {0,… , 𝑛− 1}, we have the product space 𝚺𝑛 = {0,… , 𝑛− 1}ℤ≥0, the usual unilateral

symbolic space in 𝑛 symbols, the standard model space in symbolic dynamics. Taking 𝛼 = 2−1 gives a

commonly used distance on 𝚺𝑛. The other is a relation to 𝑝-adic numbers which we will not expose

here.

Definition 1.37. Let (𝑴𝑖)𝑖∈ℕ = (𝑀𝑖, | ⋅ , ⋅ |𝑖)𝑖∈ℕ be a countable collection of metric spaces with

diameter equal to 1,𝑀 ≔×𝑖∈ℕ
𝑀𝑖 and 𝛼 ∈ ]0, 1[. The distance (with weight 𝛼)

Distance in commutative groups and quotients

Definition 1.38. Let 𝑮 = (𝐺,+,−, 0) be a commutative group. A translation invariant distance on 𝑮

is a distance | ⋅ , ⋅ | on 𝑮 such that, for every 𝑔, 𝑔′, ℎ ∈ 𝐺,

|𝑔 + ℎ, 𝑔′ + ℎ′| = |𝑔, 𝑔′|.

Definition 1.39. Let 𝑮 = (𝐺,+,−, 0) be a commutative group, | ⋅ , ⋅ |∶ 𝐺 × 𝐺 → ℝ≥0 a translation

invariant metric on 𝑮, and 𝑯 ⊴ 𝑮 a closed (normal) subgroup. The quotient distance on the quotient

group 𝑮/𝑯 is the function

| ⋅ , ⋅ |𝐺/𝐻∶ 𝐺/𝐻 × 𝐺/𝐻⟶ ℝ≥0

(𝑔 + 𝐻, 𝑔′ + 𝐻)⟼ |𝑔 + 𝐻, 𝑔′ + 𝐻|𝐺/𝐻 ≔ inf
ℎ,ℎ′∈𝐻

|𝑔 + ℎ, 𝑔′ + ℎ′|.

Proposition 1.45. Let 𝑮 = (𝐺,+,−, 0) be a commutative group, | ⋅ , ⋅ | a (left) translation invariant

metric on 𝑮, and𝑯 ⊴ 𝑮 a closed (normal) subgroup. The (right) quotient distance | ⋅ , ⋅ |𝐺/𝐻 is a (right)

translation invariant distance on 𝑮/𝑯.

Proof. We first prove that | ⋅ , ⋅ |𝐺/𝐻 is well-defined on the equivalence classes of 𝐺/𝐻. Let 𝑔+𝐻, 𝑔′+𝐻 ∈

𝐺/𝐻. Take elements 𝑔 + 𝑘 ∈ 𝑔 + 𝐻 and 𝑔′ + 𝑘′ ∈ 𝑔′ + 𝐻, with 𝑘, 𝑘′ ∈ 𝐻. For any ℎ, ℎ′ ∈ 𝐻, we have

𝑘 + ℎ′, 𝑘′ + ℎ′ ∈ 𝐻, so

inf
ℎ,ℎ′∈𝐻

|𝑔 + ℎ, 𝑔′ + ℎ′| = inf
ℎ,ℎ′∈𝐻

|𝑔 + 𝑘 + ℎ, 𝑔′ + 𝑘′ + ℎ′|.

We now prove each property of a distance.

1. (Separation) Let 𝑔 + 𝐻, 𝑔′ +𝐻 ∈ 𝐺/𝐻. If |𝑔 + 𝐻, 𝑔′ +𝐻|𝐺/𝐻 = 0, then there exists a sequence

(ℎ𝑛, ℎ
′
𝑛)𝑛∈ℕ in 𝐻2 such that lim𝑛→∞|𝑔 + ℎ𝑛, 𝑔

′ + ℎ′𝑛| = 0. This implies that lim𝑛→∞(𝑔 + ℎ𝑛) =

lim𝑛→∞(𝑔
′ + ℎ′𝑛), so 𝑔′ − 𝑔 = lim𝑛→∞(ℎ𝑛 − ℎ′𝑛). Since 𝐻 is closed, it follows that (𝑔′ − 𝑔) ∈ 𝐻,

so 𝑔 + 𝐻 = 𝑔′ +𝐻. If 𝑔 + 𝐻 = 𝑔′ +𝐻, then it follows from the (left) translation invariance of

| ⋅ , ⋅ | that

|𝑔 + 𝐻, 𝑔′ + 𝐻|𝐺/𝐻 = |𝑔 + 𝐻, 𝑔 + 𝐻|𝐺/𝐻 = inf
ℎ,ℎ′∈𝐻

|𝑔 + ℎ, 𝑔 + ℎ′| = inf
ℎ,ℎ′∈𝐻

|ℎ, ℎ′| = 0.

2. (Symmetry) Follows trivially from the symmetry of | ⋅ , ⋅ |.

3. (Triangle inequality) Follows trivially from the triangle inequality of | ⋅ , ⋅ |.

Finally, we prove that | ⋅ , ⋅ |𝐺/𝐻 is (right) translation invariant. Let 𝑔 + 𝐻, 𝑔′ + 𝐻, 𝑘 + 𝐻 ∈ 𝐺/𝐻.

Then (𝑔 + 𝐻) + (𝑘 + 𝐻) = 𝑔 + 𝑘 + 𝐻, (𝑔′ + 𝐻) + (𝑘 + 𝐻) = 𝑔′ + 𝑘 + 𝐻 and

|𝑔+𝑘+𝐻, 𝑔′+𝑘+𝐻|𝐺/𝐻 = inf
ℎ,ℎ′∈𝐻

|𝑔+𝑘+ℎ, 𝑔′+𝑘+ℎ′| = inf
ℎ,ℎ′∈𝐻

|𝑔+ℎ, 𝑔′+ℎ′| = |𝑔+𝐻, 𝑔′+𝐻|𝐺/𝐻,

so |(𝑔 + 𝐻) + (𝑘 + 𝐻), (𝑔′ + 𝐻) + (𝑘 + 𝐻)|𝐺/𝐻 = |𝑔 + 𝐻, 𝑔′ + 𝐻|𝐺/𝐻. ◼
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1.3 Measure spaces

We denote a measure space by 𝑿 = (𝑋,ℳ,𝑚), being 𝑋 the set of points of the space, ℳ its σ-algebra

and 𝑚∶ ℳ →
∞
ℝ≥0 its measure. We use in ℝ𝑑 the standard Lebesgue σ-algebra ℳℝ𝑑 and measure v𝑑.

Proposition 1.46 (Drawer principle for measure spaces). Let 𝑿 a measure space and (𝑀𝑖)𝑖∈ℕ a

countable sequence of measurable subsets of 𝑋. If ⋃
𝑖∈ℕ

𝑀𝑖 has positive measure, then some 𝑀𝑖 has

positive measure.

Theorem 1.47 (Lebesgue differentiation theorem). Let𝑀 ⊆ ℝ𝑑 be a measurable set and 𝑓 ∈ ℐ1(𝑀,ℝ)

an integrable function. For almost every 𝑥 ∈ 𝑀,

𝑓(𝑥) = lim
𝑟→0

1

v𝑑(B(𝑥; 𝑟))
∫
B(𝑥;𝑟)

𝑓 v𝑑 .

Proposition 1.48. Let𝑀 ⊆ ℝ𝑑 be a measurable set. Then𝑀 has positive measure if, and only if, for

any 𝜀 > 0, there exists a ball 𝐵 ⊆ ℝ𝑑 such that𝑚(𝑀 ∩ 𝐵) ≥ (1 − 𝜀)𝑚(𝐵).

Equivalently,𝑀 ∘= 𝟘 (is a null set) if, and only if, there exists an 𝜀 > 0 such that, for every ball 𝐵 ⊆ ℝ𝑑,

𝑚(𝑀 ∩ 𝐵) < (1 − 𝜀)𝑚(𝐵).

Proof. This is a consequence of the Lebesgue differentiation theorem (theorem 1.47). ◼

1.3.1 Almost equality

Denote𝑀 ∘= 𝑀′ for𝑚((𝑀 ∖ 𝑀′) ∪ (𝑀′ ∖ 𝑀))).

1.4 Dynamics

Let 𝑋 be a set and 𝑻 = (𝑇,+, 0) a monoid. (We denote the set of transformations from 𝑋 to 𝑋 by

𝔖(𝑋, 𝑋).) A monoid action is a transformation 𝑓∶ 𝑇 → 𝔖(𝑋, 𝑋) which satisfies

1. 𝑓0 = I;

2. For every 𝑡, 𝑡′ ∈ 𝑇, 𝑓𝑡
′
∘ 𝑓𝑡 = 𝑓𝑡+𝑡

′
.

A group action is a monoid action by a group 𝑻 = (𝑇,+,−, 0). In particular, for every 𝑡 ∈ 𝑇, the

transformation 𝑓𝑡∶ 𝑋 → 𝑋 of a group action is invertible, since

𝑓𝑡 ∘ 𝑓−𝑡 = 𝑓0 = I = 𝑓0 = 𝑓−𝑡 ∘ 𝑓𝑡.

When 𝑻 is a totally orderd by ≤, the forward cone of 𝑻 is the set

𝑇≥0 ≔ {𝑡 ∈ 𝑇 | 𝑡 ≥ 0},

and the backward cone of 𝑻 is the set

𝑇≤0 ≔ {𝑡 ∈ 𝑇 | 𝑡 ≤ 0}.

Definition 1.40. Let 𝑋 be a set and 𝑻 = (𝑇,+, 0, ≤) be a totally ordered commutative monoid. A

𝑻-time dynamics on 𝑋 is a monoid action of 𝑻 on 𝑋:

𝑓∶ 𝑇⟶ 𝔖(𝑋, 𝑋)

𝑡⟼ 𝑓𝑡∶ 𝑋⟶ 𝑋

𝑥⟼ 𝑓𝑡(𝑥),
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The set 𝑋 is called the space, the monoid 𝑻 the time, and the action 𝑓 the dynamics of the system

(𝑋, 𝑻, 𝑓).

Let 𝑻 = (𝑇,+,−, 0, ≤) be a totally ordered commutative group. A 𝑻-time invertible dynamics on 𝑋

is a group action 𝑓∶ 𝑇 → 𝔖(𝑋, 𝑋) on 𝑋.

A discrete-time (invertible) dynamics is a ℤ≥0-time (ℤ-time) dynamics 𝑓; in this case we denote

the dynamics by the time 1 transformation 𝑓∶ 𝑋 → 𝑋 and just take compositions for the action. A

continuous-time (invertible) dynamics is an ℝ≥0-time (ℝ-time) dynamics 𝑓; in this case 𝑓 is a semiflow

(flow). (Both ℤ and ℝ are considered with the usual order.)

We mainly consider discrete-time dynamics, but also some continuous-time dynamics occasionally.

Other monoids will not be consider for the time of the system, they have been presented here only to

show how discrete-time and continuous-time dynamics can be given with a single formulation.

1.4.1 Orbits and invariant sets

Definition 1.41. Let 𝑋 be a set, 𝑓 a 𝑻-time dynamics on 𝑋 and 𝑥 ∈ 𝑋 a point. The forward orbit of 𝑥

is the set

𝑓𝑇≥0(𝑥) = {𝑓𝑡(𝑥) | 𝑡 ∈ 𝑇≥0}.

If 𝑓 is invertible, the orbit of 𝑥 is the set

𝑓𝑇(𝑥) = {𝑓𝑡(𝑥) | 𝑡 ∈ 𝑇}.

Definition 1.42. Let 𝑋 be a set, 𝑓 a 𝑻-time dynamics on 𝑋

1. A forward invariant set is a set 𝑆 ⊆ 𝑋 such that, for all 𝑡 ∈ 𝑇≥0, 𝑓
𝑡(𝑆) ⊆ 𝑆;

2. A backward invariant set is a set 𝑆 ⊆ 𝑋 such that, for all 𝑡 ∈ 𝑇≤0, 𝑓
𝑡(𝑆) ⊆ 𝑆;

3. An invariant set is a set 𝑆 ⊆ 𝑋 such that, for all 𝑡 ∈ 𝑇, 𝑓𝑡(𝑆) ⊆ 𝑆.

1.5 Examples

1.5.1 Symbolic shift

1.5.2 Odometer

Let us consider the space {0,… ,𝑚 − 1}ℕ.

2 Baire theorem

2.1 Topologically negligible sets

In the following sections, we will talk about open and closed sets, codense and dense sets, rare and

corare sets, meager and comeager sets, and ideals and filters. These pairs are related by duality through

the operation of set complementation. Whenever we prove something for one of the member of such

pairs, we will omit the proof for the other because it follows directly from the duality principle.

2.1.1 Ideals and filters

Ideals formalize the notion of a negligible element. They are part of the theory of partially ordered

sets.

Definition 2.1. Let 𝑃 be a set. A partial order on 𝑃 is a relation on 𝑃 that satisfies
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1. (Reflexivity) For every 𝑝 ∈ 𝑃, 𝑝 ≤ 𝑝.

2. (Antisymmetry) For every 𝑝, 𝑝′ ∈ 𝑃, if 𝑝 ≤ 𝑝′ and 𝑝′ ≤ 𝑝, then 𝑝 = 𝑝′.

3. (Transitivity) For every 𝑝, 𝑝′, 𝑝″ ∈ 𝑃, if 𝑝 ≤ 𝑝′ and 𝑝′ ≤ 𝑝″, then 𝑝 ≤ 𝑝″.

A partially ordered set is a pair (𝑃, ≤), in which 𝑃 is a set and ≤ is a partial order on 𝑃.

The main partially ordered sets we will consider are the power set 2𝑋 of a given set 𝑋 with the

relation ⊆ of set containment, and the subset of open sets 𝒯 ⊆ 2𝑋 of a topological space (𝑋, 𝒯), also

with the containment relation.

Definition 2.2. Let (𝑃, ≤) be a partially ordered set. An ideal of (𝑃, ≤) is a set 𝐼 ⊆ 𝑃 such that

1. (Non-triviality) 𝐼 ≠ 𝟘.

2. (Downward closure) For every 𝑖 ∈ 𝐼 and 𝑝 ∈ 𝑃, if 𝑝 ≤ 𝑖, then 𝑝 ∈ 𝐼.

3. (Upward directed) For every 𝑖0, 𝑖1 ∈ 𝐼, there exists a 𝑖 ∈ 𝐼 such that 𝑖0 ≤ 𝑖 and 𝑖1 ≤ 𝑖.

A σ-ideal of (𝑃, ≤) is an ideal 𝐼 ⊆ 𝑃 such that

4. (Upward σ-directed) For every sequence (𝑖𝑛)𝑛∈ℕ in 𝐼, there exists a 𝑖 ∈ 𝐼 such that, for every

𝑛 ∈ ℕ, 𝑖𝑛 ≤ 𝑖.

The prototypes of this construction of order theory ideals are the ideals in ring theory, which

generalize the ‘negligible’ behavior that the number 0 has for the integers. As an example, we can

compare the behavior of 0with the set of even numbers: in the same way that 0+ 0 = 0 and 0×𝑛 = 0

for every integer 𝑛, it is also true that the sum of two even numbers is an even number, and that the

product of an even number by any number is also an even number. Ideals in ring theory are related to

the order theory ideals by the divisibility relation. The dual notion of an ideal is a filter.

Definition 2.3. Let (𝑃, ≤) be a partially ordered set. A filter of (𝑃, ≤) is a set 𝐹 ⊆ 𝑃 such that

1. (Non-triviality) 𝐹 ≠ 𝟘.

2. (Upward closure) For every 𝑓 ∈ 𝐹 and 𝑝 ∈ 𝑃, if 𝑓 ≤ 𝑝, then 𝑝 ∈ 𝐹.

3. (Downward directed) For every 𝑓0, 𝑓1 ∈ 𝐹, there exists a 𝑓 ∈ 𝐹 such that 𝑓 ≤ 𝑓0 and 𝑓 ≤ 𝑓1.

A σ-filter of (𝑃, ≤) is a filter 𝐹 ⊆ 𝑃 such that

4. (Downward σ-directed) For every sequence (𝑓𝑛)𝑛∈ℕ in 𝐹, there exists a 𝑓 ∈ 𝐼 such that, for

every 𝑛 ∈ ℕ, 𝑓 ≤ 𝑓𝑛.

2.1.2 Codense and dense sets

The context is a general topological space 𝑿 = (𝑋,𝒯). Remember that we denote the topological

interior of a set 𝑆 ⊆ 𝑋 by 𝑆⚬ and its topological closure by 𝑆⦁.

Definition 2.4. Let 𝑿 be a topological space.

1. A codense set is a set 𝐷 ⊆ 𝑋 such that 𝐷⚬ = 𝟘.

2. A dense set is a set 𝐷 ⊆ 𝑋 such that 𝐷⦁ = 𝑋.

The intersection of two open sets may fail to be dense. For instance, the rational numbers and

the irrational numbers are both dense in the real line, but their intersection is empty. Likewise, the

union of two codense sets may not be codense. Nevertheless, if we consider only open dense sets —

or closed codense sets — these properties are in fact true.

Proposition 2.1. Let 𝑿 be a topological space. The open dense sets form a filter of (𝒯,⊆), and the closed

codense sets form an ideal of the closed sets with containment order.
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Proof. We will only prove the proposition for open dense sets, since it follows by duality for closed

codense sets.

1. (Non-triviality) The set of open dense sets is not empty since 𝑋 is an open dense set.

2. (Upward closure) Let 𝐷 ⊆ 𝑋 be an open dense set and 𝐷 ⊆ 𝑆 an open set. Then 𝑋 = 𝐷⦁ ⊆ 𝑆⦁,

hence 𝑋 = 𝑆⦁, which shows that 𝑆 is dense.

3. (Downward directed) Let 𝐷0, 𝐷1 ⊆ 𝑋 be open dense sets. We will show that their intersection

𝐷0 ∩ 𝐷1 is also dense, since it is open by definition of the topology. Let 𝑈 ⊆ 𝑋 be an non-

empty open set. Since 𝐷0 is open, then 𝑉 ∩ 𝐷0 is open and, since 𝐷0 is dense, then 𝑉 ∩ 𝐷0 is

non-empty. Now, since 𝐷1 is dense, it follows that (𝑉 ∩ 𝐷0) ∩ 𝐷1 is non-empty. This shows

that the intersection 𝐷0 ∩ 𝐷1 is dense, because its intersection with any non-empty open set is

non-empty. (In fact, it is sufficient that one of the dense sets be open (𝐷0 in our proof) in order

to guarantee that their intersection be dense.) ◼

This shows that the dense sets form an ideal in the topology 𝒯 of the space 𝑿, but not in its power

set 2𝑋. To obtain that, we must broaden our definitions.

2.1.3 Rare and corare sets

We are going to consider sets whose closure is codense. These sets include closed codense sets, but

also sets which are not closed. Dually, we may also consider sets whose interior is dense. Remember

that we denote the topological interior of a set 𝑆 ⊆ 𝑋 by 𝑆⚬ and its topological closure by 𝑆⦁, and its

set complement by 𝑆.

Definition 2.5. Let 𝑿 be a topological space.

1. A rare (or nowhere dense) set is a set 𝑅 ⊆ 𝑋 such that (𝑅⦁)⚬ = 𝟘.

2. A corare set is a set 𝑅 ⊆ 𝑋 such that (𝑅⚬)⦁ = 𝑋.

Rare sets are also called nowhere dense sets because of the following property, which we leave as

an exercise.

Exercise 2.1. Let 𝑿 be a topological space. A set 𝑅 ⊆ 𝑋 is rare if, and only if, for every non-empty set

𝑆 ⊆ 𝑋, the intersection 𝑆 ∩ 𝑅 is not dense in 𝑆.

Proposition 2.2. Let 𝑿 be a topological space. The rare sets form an ideal of (2𝑋, ⊆), and the corare sets

form a filter of (2𝑋, ⊆).

Proof. We will prove the proposition for rare sets.

1. (Non-triviality) The empty set 𝟘 is rare.

2. (Downward closure) Let 𝑅 ⊆ 𝑋 be a rare set and 𝑆 ⊆ 𝑅. Then 𝑆⦁ ⊆ 𝑅⦁, hence (𝑆⦁)⚬ ⊆ (𝑅⦁)⚬ = 𝟘,

so it follows that (𝑆⦁)⚬ = 𝟘, which shows that 𝑆 is rare.

3. (Upward directed) Let 𝑅0, 𝑅1 ⊆ 𝑋 be rare sets. From properties of closure, (𝑅0 ∪𝑅1)
⦁ = 𝑅⦁

0 ∪𝑅
⦁
1.

To prove that ((𝑅0 ∪ 𝑅1)
⦁)⚬ = 𝟘, let 𝑈 ⊆ (𝑅0 ∪ 𝑅1)

⦁ be an open set. We will show that 𝑈 is

empty. Let 𝑉 ≔ 𝑈 ∩ 𝑅⦁
0. By definition, 𝑉 ⊆ 𝑅⦁

1. This set 𝑉 is open because 𝑈 is open and 𝑅⦁
0

is the complement of a closed set, hence open. For the sake of contradiction, suppose that

𝑈 were non-empty. Then 𝑉 would also be non-empty, since otherwise 𝑈 ⊆ 𝑅⦁
0, which would

contradict the fact that 𝑅0 is rare (every open set contained in its closure is empty). Hence 𝑉

would be a non-empty open set such that 𝑉 ⊆ 𝑅⦁
1, which would contradict the fact that 𝑅1 is

rare. Therefore 𝑈must be empty, which shows that 𝑅0 ∪ 𝑅1 is rare. ◼
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The fact that the union of two rare sets is also rare can be generalized by induction to any finite

union of rare sets, but this is not true in general for countable unions. For instance, the rational

numbers are a countable union of rare sets (each rational point on the real line), but they are dense,

hence not rare. This means that we cannot guarantee the rare sets form a σ-ideal. Again, we must

broaden our definitions to have such property.

2.1.4 Meager and comeager sets

The sets we will consider now are simply countable unions of rare sets. This forces them to be a

σ-ideal. Remember that we denote the topological interior of a set 𝑆 ⊆ 𝑋 by 𝑆⚬ and its topological

closure by 𝑆⦁.

Definition 2.6. Let 𝑿 be a topological space.

1. A meager set is a set𝑀 ⊆ 𝑋 for which there exists a countable collection (𝑅𝑛)𝑛∈ℕ of rare sets

such that

𝑀 =
⋃
𝑛∈ℕ

𝑅𝑛.

A nonmeager set is a set that is not meager.

2. A comeager (or residual) set is a set𝑀 ⊆ 𝑋 for which there exists a countable collection (𝑅𝑛)𝑛∈ℕ
of corare sets such that

𝑀 =
⋂
𝑛∈ℕ

𝑅𝑛.

Proposition 2.3. Let 𝑿 be a topological space. The meager sets form a σ-ideal of (2𝑋, ⊆), and the

comeager sets form a σ-filter of (2𝑋, ⊆).

Proof. We will prove the proposition for meager sets.

1. (Non-triviality) The empty set 𝟘 is meager.

2. (Downward closure) Let𝑀 ⊆ 𝑋 be a meager set and 𝑆 ⊆ 𝑀. Since𝑀 is meager, there exists a

sequence (𝑅𝑛)𝑛∈ℕ of rare sets such that𝑀 = ⋃
𝑛∈ℕ

𝑅𝑛. For each 𝑛 ∈ ℕ, the set 𝑆 ∩ 𝑅𝑛 is rare,

since ((𝑆 ∩ 𝑅𝑛)
⦁)⚬ ⊆ (𝑅⦁

𝑛)
⚬ = 𝟘. Then from

𝑆 = 𝑆 ∩ 𝑀 =
⋃
𝑛∈ℕ

𝑆 ∩ 𝑅𝑛

it follows that 𝑆 is meager.

3. (Upward σ-directed) Let𝑀0,𝑀1,… ⊆ 𝑋 be a sequence of meager sets. Then, for each 𝑛 ∈ ℕ,

there exists a sequence (𝑅𝑛,𝑚)𝑚∈ℕ of rare sets such that𝑀𝑛 = ⋃
𝑚∈ℕ

𝑅𝑛,𝑚. So it follows that

𝑀∪ ≔ ⋃
𝑛∈ℕ

𝑀𝑛 = ⋃
𝑛∈ℕ

⋃
𝑚∈ℕ

𝑅𝑛,𝑚,

which shows that𝑀∪ is a countable union rare sets, hence meager. ◼

2.1.5 Almost open sets

This is based on [Tao09b].

Definition 2.7. Let 𝑿 be a topological space. An almost open set is a set 𝐴 ⊆ 𝑋 for which there exists

an open set 𝑈 ⊆ 𝑋 such that the symmetric difference 𝐴 ▵ 𝑈 is meager.

Question 2.1. Let 𝑿 be a topological space. Are the almost open sets an ideal/σ-ideal? Filter?
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2.2 Baire spaces and the relationship between dense and comeager sets

A Baire space is a space where the notion of being meager implies the notion of being codense, or,

equivalently, where the notion of being comeager (residual) implies the notion of being dense. These

spaces are special since these two different notions of negligibility are not always equivalent.

Definition 2.8. A Baire space is a topological space 𝑿 in which every meager set is codense.

We could use any of the properties from proposition 2.4 to define Baire spaces. We choose

property 1 because it is the most meaningful in the context we are presenting about the different

types of set negligibility, but the most commonly used one to define Baire spaces is property 4.

In the following proposition we show the equivalence of many notions relating meager and

comeager sets to codense and dense sets. Remember that we denote the topological interior of a set

𝑆 ⊆ 𝑋 by 𝑆⚬ and its topological closure by 𝑆⦁.

Proposition 2.4. Let 𝑿 be a topological space. The following properties of 𝑿 are equivalent to each other.

1. Every meager set is codense (Baire space).

2. Every comeager set is dense.

3. Every countable union of closed codense sets is codense.

4. Every countable intersection of open dense sets is dense.

5. Every non-empty open set is nonmeager.

Proof. Properties 1 and 2 are equivalent because a set is dense if, and only if, its complement is

codense, and it is meager if, and only if, its complement is comeager. Properties 3 and 4 are also

equivalent using complements.

Let us show that properties 1 and 3 are equivalent. Assume property 1 is true. Since every

closed codense set is a rare set, a countable union of closed codense sets is meager, therefore is codense

by property 1. Now assume property 3 is true, and let 𝑀 ⊆ 𝑋 be a meager set and (𝑅𝑛)𝑛∈ℕ a

countable collection of rare sets such that 𝑀 = ⋃
𝑛∈ℕ

𝑅𝑛. Since each 𝑅𝑛 is rare, we have (𝑅⦁
𝑛)

⚬ = 𝟘,

so its closure 𝑅⦁
𝑛 is codense. Then from property 3 it follows that 𝑀⦁ = ⋃

𝑛∈ℕ
𝑅⦁
𝑛 is a codense set

because it is a union of closed codense sets. This means that (𝑅⦁
𝑛)

⚬ = 𝟘, therefore 𝑀⚬ ⊆ (𝑀⦁)⚬ = 𝟘,

which shows that the meager set𝑀 is codense.

Finally, let us show that properties 1 and 5 are equivalent. Assuming property 1, if 𝑈 is open

and meager, then its interior is empty, so it is empty. Conversely, assuming property 5, for each

meager set 𝑀, its interior 𝑀⚬ is also meager, since it is a subset of a meager set (proposition 2.3).

However,𝑀⚬ is also open, so from property 5 it must be empty, that is, 𝑀⚬ = 𝟘, which means that

the meager set𝑀 is codense. ◼

The Baire category theorem (theorem 2.5) is a classical result that provides two different sufficient

conditions a space may satisfy in order for it to be a Baire space. Neither condition implies the other,

since there are locally compact metric spaces that are not completely metrizable and vice-versa. The

following demonstration is based on Rudin [Rud91, §2.2].

Theorem 2.5 (Baire). Let 𝑿 be a topological space.

1. If 𝑿 is a locally compact Hausdorff space, then it is a Baire space.

2. If 𝑿 is a completely metrizable space, then it is a Baire space.

Proof. We present each proof separately, but they are essentially very similar. Let (𝐷𝑛)𝑛∈ℕ be a

countable collection of open dense sets and 𝑈 ⊆ 𝑋 be a non-empty open set. We will prove that

𝐷 ∶= ⋂
𝑛∈ℕ

𝐷𝑛 is dense by showing that 𝐷 ∩ 𝑈 ≠ 𝟘.
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1. Suppose 𝑿 is a locally compact Hausdorff space. This implies that every point of 𝑋 has a local

basis of compact neighborhoods. Since 𝐷0 is dense and 𝑈 is open, there exists 𝑝0 ∈ 𝐷𝑛 ∩ 𝑈,

and, since 𝐷0 is open, the intersection 𝐷0 ∩ 𝑈 is open, so because every point of 𝑋 has a local

basis of compact neighborhoods, it follows that there exists a compact set 𝐾0 ⊆ 𝐷0 ∩ 𝑈. Now

we recursively define, for every 𝑛 ∈ ℕ, a compact set 𝐾𝑛+1 such that

𝐾𝑛+1 ⊆ 𝐷𝑛+1 ∩ 𝐾𝑛.

It then follows from proposition 1.21 that ⋂𝐾𝑛 is compact, hence ⋂
𝑛∈ℕ

𝐾𝑛 ≠ 𝟘. But

notice that, for every 𝑛 ∈ ℕ, 𝐾𝑛 ⊆ 𝐷𝑛 ∩ 𝑈, because 𝐾𝑛 ⊆ 𝐷𝑛 and, by induction, 𝐾𝑛 ⊆ 𝐾𝑛−1 ⊆

⋯ ⊆ 𝐾0 ⊆ 𝑈, so

𝟘 ≠
⋂
𝑛∈ℕ

𝐾𝑛 ⊆ ⋂
𝑛∈ℕ

𝐷𝑛 ∩ 𝑈 = 𝐷 ∩ 𝑈,

hence 𝐷 ∩ 𝑈 ≠ 𝟘, which shows that 𝐷 is dense.

2. Suppose 𝑿 is completely metrizable and | ⋅ , ⋅ | is a metric on 𝑋 that makes 𝑿 a complete metric

space. Since 𝐷0 is dense and 𝑈 is open, there exists 𝑝0 ∈ 𝐷0 ∩ 𝑈, and, since 𝐷0 is open, the

intersection𝐷0∩𝑈 is open, so there exists a real number 0 < 𝑟0 < 1 such that B[𝑝0; 𝑟0] ⊆ 𝐷0∩𝑈.

Now we recursively define sequences (𝑝𝑛)𝑛∈ℕ and (𝑟𝑛)𝑛∈ℕ as follows. Denote 𝐵𝑛 ≔ B(𝑝𝑛; 𝑟𝑛)

Given 𝑛 ∈ ℕ, the intersection 𝐷𝑛+1 ∩ 𝐵𝑛 is non-empty since 𝐷𝑛+1 is dense, thus there exists a

point 𝑝𝑛+1 ∈ 𝐷𝑛+1 ∩ 𝐵𝑛. Also, since 𝐷𝑛+1 ∩ 𝐵𝑛 is open, there exists a real number 0 < 𝑟𝑛+1 <

2−(𝑛+1) such that

𝐵⦁
𝑛+1 ⊆ 𝐷𝑛+1 ∩ 𝐵𝑛.

It then follows from proposition 1.32 that⋂
𝑛∈ℕ

𝐵⦁
𝑛 ≠ 𝟘. But notice that, for every 𝑛 ∈ ℕ,

𝐵⦁
𝑛 ⊆ 𝐷𝑛 ∩ 𝑈, because 𝐵⦁

𝑛 ⊆ 𝐷𝑛 and, by induction, 𝐵⦁
𝑛 ⊆ 𝐵𝑛−1 ⊆ ⋯ ⊆ 𝐵0 ⊆ 𝑈, so

𝟘 ≠
⋂
𝑛∈ℕ

𝐵⦁
𝑛 ⊆ ⋂

𝑛∈ℕ

𝐷𝑛 ∩ 𝑈 = 𝐷 ∩ 𝑈,

hence 𝐷 ∩ 𝑈 ≠ 𝟘, which shows that 𝐷 is dense. ◼

Exercise 2.2. Show that the irrational numbers ℝ ∖ℚ are a Baire space.

2.3 Gδ and Fσ sets

Gδ and Fσ sets are related to the logical structure used to define them. Gδ sets are sets which can be

defined by a countable universal quantifier over ‘open conditions’. Dually, Fσ sets are defined by a

countable existential quantifier over ‘closed conditions’. For instance, since being a point is a closed

condition (a singleton is closed in the line ℝ), and there are countable rational numbers, ℚ is an Fσ set.

The irrational numbers are therefore a Gδ : not being a point is an open condition (the complement

of a singleton is open in ℝ) and an irrational point is a point that is not any rational number, so a

countable universal quantifier is used. These examples will become clearer after the definition.

Definition 2.9. Let 𝑿 be a topological space.

1. A Gδ set is a set 𝐺 ⊆ 𝑋 for which there exists a countable collection (𝐴𝑛)𝑛∈ℕ of open sets such

that

𝐺 =
⋂
𝑛∈ℕ

𝐴𝑛.

2. An Fσ set is a set 𝐹 ⊆ 𝑋 for which there exists a countable collection (𝐹𝑛)𝑛∈ℕ of closed sets such

that

𝐹 =
⋃
𝑛∈ℕ

𝐹𝑛.
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We first state some basic consequences of the definitions.

Proposition 2.6. Let 𝑿 be a topological space.

1. An open set is a Gδ set.

2. A closed set is an Fσ set.

3. The intersection of a countable collection of Gδ sets is a Gδ set.

4. The union of a finite collection of Gδ sets is a Gδ set.

5. The union of a countable collection of Fσ sets is a Fσ set.

6. The intersection of a finite collection of Fσ sets is a Fσ set.

7. The complement of a Gδ set is an Fσ set.

Example 2.1. The rational numbersℚ are an Fσ set in the real numbersℝ, because they are countable

and, for each 𝑞 ∈ ℚ, the singleton set {𝑞} is closed. More generrally, every countable set in an accessible

topological space is an Fσ set.

Example 2.2. The irrational numbers ℝ ∖ℚ are a Gδ set in the real numbers ℝ, because they are the

complement of the rational numbers, which are an Fσ set. Explicitely, the irrational numbers can be

given as ℝ ∖ℚ = ⋂
𝑞∈ℚ

{𝑞}, each set {𝑞} being not only open but also dense, hence corare. This shows

that the irrational numbers are a comeager (residual) set.

Example 2.3. The rational numbers are not a Gδ set. If they were, they would be a contable intersec-

tion of open sets (𝐴𝑛)𝑛∈ℕ, but then each 𝐴𝑛 would also be dense in ℝ, because ℚ is dense in ℝ and

ℚ ⊆ 𝐴𝑛. Since the irrational numbers are a countable intersection of open dense sets (complements

of rational points), it would be possible to express the 𝟘, which is the intersection of ℚ and ℝ ∖ ℚ,

as a countable intersection of open dense sets. This is in contradiction with the fact that the real

numbers is a Baire space (as a consequence of theorem 2.5), because in a Baire space every countable

intersection of open dense sets is dense in the space (proposition 2.4).

For the next proposition, remember that a continuity point of a function 𝑓∶ 𝑋 → 𝑋 ′ between

topological spaces 𝑿 and 𝑿 ′ is a point 𝑥 ∈ 𝑋 for which, given an neighborhood 𝑉 ′ of 𝑓(𝑥) ∈ 𝑋 ′, there

exists a neighborhood 𝑉 of 𝑥 such that 𝑓(𝑉) ⊆ 𝑉 ′. When 𝑿 ′ = 𝑴 is a metric space, this is equivalent

to the following: for every 𝜀 ∈ ℝ>0, there exists a neighborhood 𝑉 of 𝑥 such that 𝑓(𝑉) ⊆ B(𝑓(𝑥); 𝜀);

that is, for every 𝑥′ ∈ 𝑉, |𝑓(𝑥), 𝑓(𝑥′)| < 𝜀.

Proposition 2.7. Let 𝑿 be a topological space,𝑴 a metrizable topological space and 𝑓∶ 𝑋 → 𝑀 a

function. The continuity set 𝐶 of 𝑓 (the set of points 𝐶 ⊆ 𝑋 on which 𝑓 is continuous) is a Gδ set and the

discontinuity set 𝐷 of 𝑓 (the set of points 𝐷 ⊆ 𝑋 on which 𝑓 is not continuous) is an Fσ set.

Proof. Let | ⋅ , ⋅ | be a metric that generates the topology of 𝑴. For each 𝑛 ∈ ℤ>0, define the set

𝐴𝑛 ≔ {𝑥 ∈ 𝑋
||| there exists a neigborhood 𝑉 of 𝑥 such that, for every 𝑥′, 𝑥″ ∈ 𝑉, |𝑓(𝑥′), 𝑓(𝑥″)| <

1

𝑛
}.

We first show that the set 𝐴𝑛 is open. Let 𝑥 ∈ 𝐴𝑛 and take a neighborhood 𝑉 ⊆ 𝑋 of 𝑥 such that, for

every 𝑥′, 𝑥″ ∈ 𝑉, it holds that |𝑓(𝑥′), 𝑓(𝑥″)| <
1

𝑛
. For every 𝑦 ∈ 𝑉, the set 𝑉 is also a neighborhood of

𝑦 and it has the desired property for 𝑦 to be an element of 𝐴𝑛. Then 𝑉 ⊆ 𝐴𝑛, which shows that 𝐴𝑛 is

open.

Now define the Gδ set 𝐺 ≔ ⋂
𝑛∈ℤ>0

𝐴𝑛. We will prove that 𝐺 = 𝐶.

• (𝐶 ⊆ 𝐺) Let 𝑥 ∈ 𝐶 and take 𝑛 ∈ ℤ>0. Since 𝑥 is in the continuity set of 𝑓, there exists a

neighborhood 𝑉 ⊆ 𝑋 of 𝑥 such that, for every 𝑥′ ∈ 𝑉, |𝑓(𝑥), 𝑓(𝑥′)| <
1

2𝑛
. Then it follows by the

triangle inequality that, for every 𝑥′, 𝑥″ ∈ 𝑉,

|𝑓(𝑥′), 𝑓(𝑥″)| ≤ |𝑓(𝑥′), 𝑓(𝑥)| + |𝑓(𝑥), 𝑓(𝑥″)| <
1

𝑛
,
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which shows that 𝑥 ∈ 𝐴𝑛 and hence that 𝑥 ∈ 𝐺.

• (𝐺 ⊆ 𝐶) Let 𝑥 ∈ 𝐺 and take 𝜀 ∈ ℝ>0. There exists 𝑛 ∈ ℤ>0 such that
1

𝑛
≤ 𝜀, and, since 𝑥 ∈ 𝐴𝑛,

there exists a neighborhood 𝑉 ⊆ 𝑋 of 𝑥 such that, for all 𝑥′ ∈ 𝑉,

|𝑓(𝑥), 𝑓(𝑥′)| <
1

𝑛
≤ 𝜀,

which shows that 𝑥 is a continuity point of 𝑓, so 𝑥 ∈ 𝐶.

This shows that 𝐶 is a Gδ set and the fact that the discontinuity set is an Fσ set then follows by set

complementation. ◼

Figure 2. Thomae’s function is a function that is only continuous at irrational points.

Proposition 2.8. A subspace of a completely metrizable space𝑴 is itself completely metrizable if, and

only if, it is a Gδ set in𝑴.

2.4 Measurably negligible sets

This is based on [Tao09b].

Denote𝑀 ∘= 𝑀′ for𝑚((𝑀 ∖ 𝑀′) ∪ (𝑀′ ∖ 𝑀))).

Definition 2.10. Let 𝑿 = (𝑋,ℳ,𝑚) be a measure space.

1. A null set is a measurable set 𝑁 ∈ ℳ such that 𝑁 ∘= 𝟘 (equivalently,𝑚(𝑁) = 0).

2. A conull (or full measure) set is a measurable set 𝑁 ∈ ℳ such that 𝑁 ∘= 𝑋 (equivalently,

𝑚(𝑁) = 𝑚(𝑋)).

Proposition 2.9. Let 𝑿 be a measure space. The null sets form a σ-ideal of (ℳ,⊆), and the conull sets

form a σ-filter of (ℳ,⊆).

Proof. We will prove the proposition for null sets.

1. (Non-triviality) The empty set 𝟘 is null.

2. (Downward closure) Let𝑁 ⊆ 𝑋 be a null set and 𝑆 ⊆ 𝑁 a measurable set. Then𝑚(𝑆) ≤ 𝑚(𝑁) =

0, which shows that 𝑆 is null.
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3. (Upward σ-directed) Let 𝑁0, 𝑁1,… ⊆ 𝑋 be a sequence of null sets and 𝑁∪ ≔ ⋃
𝑛∈ℕ

𝑁𝑛. Then

𝑁∪ is measurable and

𝑚(𝑁∪) = 𝑚(
⋃
𝑛∈ℕ

𝑁𝑛) ≤+
𝑛∈ℕ

𝑚(𝑁𝑛) = 0,

which shows that 𝑁∪ is null. ◼

3 Topological dynamics

3.1 Topological transitivity

The simplest notion of transitivity comes from group actions.

Definition 3.1. Let 𝑋 be a set and 𝑮 a group. A transitive group action of 𝑮 on 𝑋 is a group action

𝑎∶ 𝐺 × 𝑋 → 𝑋 for which, given any pair of points 𝑥, 𝑥′ ⊆ 𝑋, there exists 𝑔 ∈ 𝐺 such that 𝑎𝑔(𝑥) = 𝑥′.

Thus, in the context discrete-time invertible dynamics, we could consider the definition group

actions of ℤ: A transitive dynamics on 𝑋 is an invertible dynamics 𝑓∶ 𝑋 → 𝑋 for which, given any

pair of points 𝑥, 𝑥′ ⊆ 𝑋, there exists an integer 𝑛 ∈ ℤ such that 𝑓𝑛(𝑥) = 𝑥′. This is equivalent to the

existence of an orbit of a point of the system that equals the whole space 𝑋.

If we restrict this to dynamics that are not necessarily invertible, we must consider semigroup

actions of ℤ≥0, and we obtain the following definition: A transitive dynamics on 𝑋 is a dynamics 𝑓∶

𝑋 → 𝑋 for which, given any pair of points 𝑥, 𝑥′ ⊆ 𝑋, there exists a positive integer 𝑛 ∈ ℤ≥0 such that

𝑓𝑛(𝑥) = 𝑥′. This in turn is equivalent to the existence of a forward orbit of a point of the system that

equals 𝑋, in fact a periodic orbit, which implies that ths system is in fact invertible.

This definition is, of course, very restrictive for our considerations. When we consider a topological

space instead of a set, we can weaken this notion of transitivity. A point does not necessarily need

to reach another point, only come arbitrarily close to it. This means it needs to visit every open

neighborhood of the other points in the space or, in other words, its forward orbit must be dense.

Because of its direct relation to the concept of transitivity, we call this topological transitivity, but this

is often simply called transitivity in the context of topological dynamics, in which the much stronger

notion of transitivity of (semi)group actions is barely useful.

Definition 3.2. Let 𝑿 be a topological space. A topologically transitive dynamics on 𝑋 is a continuous

dynamics 𝑓∶ 𝑋 → 𝑋 for which there exists a point 𝑥 ∈ 𝑋 whose forward orbit 𝑓ℤ≥0(𝑥) is dense in 𝑋.

Such a point is called a topologically transitive point. The transitive set of 𝑓, denoted T(𝑓), is the set of

all topologically transitive points of 𝑓.

Under a different perspective, instead of considering a point that visits every neighborhood, we

can consider dynamics in which (non-empty) neighborhoods of the space visit each other. This gives

rise to another definition, which we call regional topological transitivity following Gottschalk and

Hedlund [GH55], but which is often called topological transitivity.

Definition 3.3. Let 𝑿 be a topological space. A regionally (topologically) transitive dynamics on 𝑋 is a

continuous dynamics 𝑓∶ 𝑋 → 𝑋 for which, given any pair of non-empty open sets 𝑈,𝑈 ′ ⊆ 𝑋, there

exists a positive integer 𝑛 ∈ ℤ≥0 such that 𝑓𝑛(𝑈) ∩ 𝑈 ′ ≠ 𝟘.

There are other, more general notions of topological transitivity which distinguish forward and

backward orbits, or take into account hitting sets etc. Akin and Carlson present a comprehensive dis-

cussion of these definitions and their relations [AC12]. Gottschalk and Hedlund present a discussion

about topological transitivity for flows and, more generally, for (semi)group actions [GH55].
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The concepts of topological transitivity and regional transitivity presented in definitions 3.2

and 3.3 are not equivalent for arbitrary topological spaces. In fact, neither implies the other. Neverthe-

less, under some reasonable assumptions on the topological space, the two notions are equivalent.

The classical result in this regard is Birkhoff’s transitivity theorem.

Theorem 3.1 (Birkhoff). Let𝑴 be a perfect, second-countable and complete metric space. Then a

continuous dynamics 𝑓∶ 𝑀 → 𝑀 is regionally transitive if, and only if, it is topologically transitive.

In what follows, we will prove two propositions, propositions 3.3 and 3.5, which, along with the

fact that every metric space is accessible and every complete metric space is Baire, imply theorem 3.1.

Each of these propositions consider different sufficient conditions the topological space must satisfy

in order for one notion of topological transitivity to imply the other. To prove the first one, we need a

simple lemma.

Lemma 3.2. Let 𝑿 be an accessible and perfect topological space and 𝑓∶ 𝑋 → 𝑋 a continuous dynamics.

If a point 𝑥 ∈ 𝑋 is topologically transitive, then, for every positive integer 𝑛 ∈ ℤ≥0, the point 𝑓
𝑛(𝑥) is also

topologically transitive.

Proof. Let 𝑥 ∈ 𝑋 be a topologically transitive point and take a positive integer 𝑛 ∈ ℤ≥0 and an non-

empty open set 𝑈 ⊆ 𝑋. Consider the set 𝑓⟦𝑛⟧(𝑥) = {𝑓𝑚(𝑥) | 0 ≤ 𝑚 < 𝑛} and define 𝑈 ′ ≔ 𝑈 ∖ 𝑓⟦𝑛⟧(𝑥).

Since 𝑈 is a non-empty open set, 𝑓⟦𝑛⟧(𝑥) is a finite set, and 𝑿 accessible and perfect, the set 𝑈 ′ is a

non-empty open set (lemma 1.2).

So the set 𝑈 ′ is a non-empty open set that does not contain any of the 𝑓𝑚(𝑥) for 0 ≤ 𝑚 < 𝑛. Since

𝑥 is topologically transitive, it follows that there exists 𝑛′ ≥ 0 such that 𝑓𝑛
′
(𝑥) ∈ 𝑈 ′. But the definition

of 𝑈 ′ implies that 𝑛′ ≥ 𝑛 and, since 𝑈 ′ ⊆ 𝑈, if follows that 𝑓𝑛(𝑥) is also topologically transitive. ◼

Proposition 3.3. Let 𝑿 be an accessible and perfect topological space and 𝑓∶ 𝑋 → 𝑋 a continuous

dynamics. If 𝑓 is topologically transitive, then it is regionally transitive.

Proof. Let 𝑥 ∈ 𝑋 be a topologically transitive point and take a pair of non-empty open sets 𝑈,𝑈 ′ ⊆ 𝑋.

Since 𝑥 is topologically transitive, there exists a positive integer 𝑚 ≥ 0 such that 𝑓𝑚(𝑥) ∈ 𝑈. Because

the space 𝑿 is perfect, the point 𝑓𝑚(𝑥) is also topologically transitive (lemma 3.2), so there exists a

positive integer 𝑛 ≥ 0 such that 𝑓𝑛(𝑓𝑚(𝑥)) ∈ 𝑈 ′. It follows that 𝑓𝑚+𝑛(𝑥) ∈ 𝑓𝑛(𝑈) ∩ 𝑈 ′, therefore

𝑓𝑛(𝑈) ∩ 𝑈 ′ ≠ 𝟘, which shows that 𝑓 is regionally transitive. ◼

Wrong proof. Where is the mistake?2 Let 𝑥 ∈ 𝑋 be a topologically transitive point and take a pair of

non-empty open sets 𝑈,𝑈 ′ ⊆ 𝑋. Since 𝑥 is topologically transitive, there exists a positive integer

𝑛 ≥ 0 such that 𝑓𝑛(𝑥) ∈ 𝑈 ′ and, because 𝑓 is continuous, 𝑓−𝑛(𝑈 ′) is an open set, hence 𝑈 ∩ 𝑓−𝑛(𝑈 ′)

is also open. Since 𝑥 is topologically transitive, there exists a positive integer 𝑚 ≥ 0 such that

𝑓𝑚(𝑥) ∈ 𝑈 ∩𝑓−𝑛(𝑈 ′). It follows that 𝑓𝑚+𝑛(𝑥) ∈ 𝑓𝑛(𝑈) ∩𝑈 ′, therefore 𝑓𝑛(𝑈) ∩𝑈 ′ ≠ 𝟘, which shows

that 𝑓 is regionally transitive. ◼

Before proving proposition 3.5, we provide a usefull classification of the set of topologically

transitive points in second-countable spaces.

Lemma 3.4. Let 𝑿 be a second-countable topological space and 𝑓∶ 𝑋 → 𝑋 a continuous dynamics. The

set T(𝑓) of topologically transitive points of 𝑓 is a Gδ set. If (𝑈𝑛)𝑛∈ℕ is a countable basis of non-empty

open sets for the topology of 𝑿, then, for every 𝑛 ∈ ℕ, the union⋃
∞

𝑚=0
𝑓−𝑚(𝑈𝑛) is a non-empty open set

and

T(𝑓) =

∞

⋂
𝑛=0

∞

⋃
𝑚=0

𝑓−𝑚(𝑈𝑛).

2. The mistake is in assuming that𝑈 ∩ 𝑓−𝑛(𝑈′) is non-empty to be able to use the topological transitivity of the point 𝑥, since

this is exactly what we are trying to prove. This “proof” was suggested by a Large Language Model after some even more wrong

attempts at proving this proposition.
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Proof. Let (𝑈𝑛)𝑛∈ℕ be a countable basis of non-empty open sets for the topology of 𝑿. For each

𝑛 ∈ ℤ≥0, the set of points of 𝑋 that eventually visit 𝑈𝑛 in positive time under the action of 𝑓 is the set

𝑉𝑛 ≔

∞

⋃
𝑚=0

𝑓−𝑚(𝑈𝑛).

Since 𝑈𝑛 is open and 𝑓 is continuous, 𝑉𝑛 is also open, and it is non-empty since 𝟘 ≠ 𝑈𝑛 ⊆ 𝑉𝑛.

Finally, let us consider the set

𝑇 ≔

∞

⋂
𝑛=0

𝑉𝑛 =

∞

⋂
𝑛=0

∞

⋃
𝑚=0

𝑓−𝑚(𝑈𝑛).

This is the set of points of 𝑋 that eventually visit each open basic set 𝑈𝑛 in positive time under the

action of 𝑓 or, equivalently, the set of all topologically transitive points of the system. This also shows

that the set of topologically transitive points is a Gδ set. ◼

For the next proposition, let’s remember that in a Baire space every countable intersection of open

dense sets is a dense set (proposition 2.4).

Proposition 3.5. Let 𝑿 be a second-countable and Baire topological space and 𝑓∶ 𝑋 → 𝑋 a continuous

dynamics. If 𝑓 is regionally transitive, then it is topologically transitive.

Proof. Let (𝑈𝑛)𝑛∈ℕ be a countable basis of non-empty open sets for the topology of 𝑿. For each

𝑛 ∈ ℤ≥0, define

𝐷𝑛 ≔

∞

⋃
𝑚=0

𝑓−𝑚(𝑈𝑛).

From lemma 3.4, we know that each 𝐷𝑛 is a non-empty open set and that the transitive set of 𝑓 is

given by

T(𝑓) =

∞

⋂
𝑛=0

𝐷𝑛.

We will show that each 𝐷𝑛 is dense in 𝑋. Let 𝑉 ⊆ 𝑋 be a non-empty open set. Since 𝑓 is regionally

transitive, for the non-empty open sets 𝑈𝑛 and 𝑉 there exists a positive integer 𝑚 ≥ 0 such that

𝑓𝑚(𝑉) ∩𝑈𝑛 ≠ 𝟘, which is equivalent to 𝑉 ∩ 𝑓−𝑚(𝑈𝑛) ≠ 𝟘. This implies that 𝑉 ∩𝐷𝑛 ≠ 𝟘, which shows

that 𝐷𝑛 is dense in 𝑋.

Finally, since 𝑿 is a Baire space and the sets 𝐷𝑛 are open and dense, it follows that 𝐷 is also dense,

which implies that it is not empty (the case in which 𝑋 = 𝟘 is trivial), so there exists a topologically

transitive point and hence 𝑓 is topologically transitive. ◼

3.1.1 Topological transitivity for forward and backward orbits

Proposition 3.6. Let 𝑿 be a perfect and compact metric space and 𝑓∶ 𝑋 → 𝑋 a homeomorphism. If

there exists a point 𝑥 ∈ 𝑋 whose orbit 𝑓ℤ(𝑥) is dense in 𝑋, then 𝑓 is topologically transitive.

Proof. This uses proposition 3.5. Check [MSE18]. ◼

Proposition 3.7. Let 𝑿 be a perfect and compact metric space and 𝑓∶ 𝑋 → 𝑋 a homeomorphism. If 𝑓

is topologically transitive, then 𝑓−1 is topologically transitive.

Proof. This uses proposition 3.5. Check [MSE18].

◼
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3.2 Recurrence

Definition 3.4. Let 𝑿 be a topological space and 𝑓∶ 𝑋 → 𝑋 a continuous dynamics. A recurrent

point of 𝑓 is a point 𝑥 ∈ 𝑋 such that, for every neighborhood 𝑉 of 𝑥, there exists 𝑛 ∈ ℤ>0 such that

𝑓𝑛(𝑥) ∈ 𝑉. The recurrent set of 𝑓 is the set of all recurrent points of 𝑓, denoted R(𝑓).

Other definitions of recurrent point exists and they are all equivalent (see [LS15]). For instance,

this is equivalent to the existence of a sequence (𝑛𝑖)𝑖∈ℕ of natural numbers such that lim𝑖→∞ 𝑛𝑖 = ∞

and lim𝑖∈ℕ 𝑓
𝑛𝑖 = 𝑥. The following proof is based on [VO16].

Proposition 3.8 (Birkhoff recurrence theorem). Let 𝑿 be a compact topological space and 𝑓∶ 𝑋 → 𝑋

a continuous dynamics. Then

R(𝑓) ≠ 𝟘.

Proof. Let ℐ ⊆ 2𝑋 be the set of all closed non-empty forward invariant sets 𝐼 ⊆ 𝑋 (that is, 𝑓(𝐼) ⊆ 𝐼).

This family is non-empty because 𝑋 ∈ ℐ. Let us show that a set 𝐼 ∈ ℐ is minimal with respect to the

contaiment relation ⊆ if, and only if, the orbit of every 𝑥 ∈ 𝐼 is dense in 𝐼.

• (⇒) Let 𝐼 ∈ ℐ be minimal with respect to the contaiment relation ⊆. Since 𝐼 is forward invariant,

the orbit of every 𝑥 ∈ 𝐼 in included in 𝐼, and, since 𝐼 is closed, the topological closure of such

orbit is contained in 𝐼. So, because 𝐼 is minimal, the closure of this orbit must equal 𝐼, otherwise

the closure of the orbit would be a set 𝐶 ⊂ 𝐼 that is closed, non-empty and forward invariant,

contradicting the minimality of 𝐼.

• (⇐) Let 𝐼 ∈ ℐ be a set such that the orbit of every 𝑥 ∈ 𝐼 is dense in 𝐼. Then every closed,

non-empty and forward invariant set 𝐶 ⊆ 𝐼must equal 𝐼, because closure of the orbit of every

𝑥 ∈ 𝐶 is contained in 𝐶 and equals 𝐼. This shows that 𝐼 is minimal.

This implies that every point in such a minimal set is recurrent, so it is enough to prove there exists a

minimal set.

To this end we show that every decreasing chain (𝐼𝜔)𝜔∈𝛺 in ℐ has a minorant. Let 𝐼∩ ≔ ⋂
𝜔∈𝛺

𝐼𝜔.

Since (𝐼𝜔)𝜔∈𝛺 is a decreasing chain of closed non-empty sets and 𝑿 is compact, their intersection 𝐼∩ is

non-empty (proposition 1.13). The intersection 𝐼∩ is closed because it is an intersection of closed

sets 𝐼𝜔, and is forward invariant because each 𝐼𝜔 is forward invariant, so 𝑓(𝐼∩) = ⋂
𝜔∈𝛺

𝑓(𝐼𝜔) ⊆ 𝐼∩.

Since 𝐼∩ ⊆ 𝐼𝜔 for every 𝐼𝜔, this shows 𝐼∩ is a minorant of (𝐼𝜔)𝜔∈𝛺. Finally, it then follows from Zorn’s

lemma that ℐ contains a minimal element, hence 𝑓 has a recurrent point. ◼

The next result shows that the recurrent set is a Gδ set.

Proposition 3.9. Let 𝑿 be a metric space and 𝑓∶ 𝑋 → 𝑋 a continuous dynamics. The recurrent set

R(𝑓) is a Gδ set and

R(𝑓) =
⋂
𝑚≥1

⋃
𝑛≥𝑚

{𝑥 ∈ 𝑋
||| |𝑥, 𝑓

𝑛(𝑥)| <
1

𝑚
}.

Proof. For every𝑚, 𝑛 ∈ ℤ>0 such that 𝑛 ≥ 𝑚 ≥ 1, define the sets

𝑅𝑚,𝑛 ≔ {𝑥 ∈ 𝑋
||| |𝑥, 𝑓

𝑛(𝑥)| <
1

𝑚
},

𝑅𝑚 ≔ ⋃
𝑛≥𝑚

𝑅𝑚,𝑛 and 𝑅 ≔ ⋂
𝑚≥1

𝑅𝑚. The function 𝑑∶ 𝑋 → ℝ≥0 defined by 𝑑(𝑥) ≔ |𝑥, 𝑓(𝑥)| is

continuous, because 𝑓 and | ⋅ , ⋅ | are continuous, and we have

𝑅𝑚,𝑛 = 𝑑−𝑛 ([0,
1

𝑚
[) .
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This shows that 𝑅𝑚,𝑛 is open, hence 𝑅𝑚 is open, so we conclude that 𝑅 is a Gδ set. But 𝑅 is precisely

the set of points 𝑥 ∈ 𝑋 that, for every neighborhood B(𝑥;
1

𝑚
), there exists an integer 𝑛 ≥ 𝑚 such that

𝑓𝑛(𝑥) ∈ B(𝑥;
1

𝑚
), which is the recurrent set. ◼

Proposition 3.10 (Erdős-Stone). Let 𝑿 be a topological space and 𝑓∶ 𝑋 → 𝑋 a continuous dynamics.

For every 𝑛 ∈ ℤ≥0,

R(𝑓) = R(𝑓𝑛).

3.3 Non-wandering points

Definition 3.5. Let𝑿 be a topological space and 𝑓∶ 𝑋 → 𝑋 a continuous dynamics. A non-wandering

point of 𝑓 is a point 𝑥 ∈ 𝑋 such that, for every neighborhood 𝑉 of 𝑥, there exists 𝑛 ∈ ℤ>0 such that

𝑓𝑛(𝑉) ∩ 𝑉 ≠ 𝟘. The non-wandering set of 𝑓 is the set of all non-wandering points of 𝑓, denoted Ω(𝑓).

Proposition 3.11. Let 𝑿 be a topological space and 𝑓∶ 𝑋 → 𝑋 a continuous dynamics. Every topologi-

cally transitive point is recurrent, and every recurrent point is a non-wandering point:

T(𝑓) ⊆ R(𝑓) ⊆ Ω(𝑓).

Check [MSE22] for an example of a point that is non-wandering, but is not recurrent.
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